Cargando…
An opto-magneto-mechanical quantum interface between distant superconducting qubits
A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to ac...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081873/ https://www.ncbi.nlm.nih.gov/pubmed/24994063 http://dx.doi.org/10.1038/srep05571 |
Sumario: | A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss. |
---|