Cargando…
Missing data estimation in fMRI dynamic causal modeling
Dynamic Causal Modeling (DCM) can be used to quantify cognitive function in individuals as effective connectivity. However, ambiguity among subjects in the number and location of discernible active regions prevents all candidate models from being compared in all subjects, precluding the use of DCM a...
Autores principales: | Zaghlool, Shaza B., Wyatt, Christopher L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082189/ https://www.ncbi.nlm.nih.gov/pubmed/25071435 http://dx.doi.org/10.3389/fnins.2014.00191 |
Ejemplares similares
-
Assessing parameter identifiability for dynamic causal modeling of fMRI data
por: Arand, Carolin, et al.
Publicado: (2015) -
A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI
por: Cao, Xuefei, et al.
Publicado: (2019) -
Dynamic Causal Modeling for fMRI With Wilson-Cowan-Based Neuronal Equations
por: Sadeghi, Sadjad, et al.
Publicado: (2020) -
Identifying Abnormal Connectivity in Patients Using Dynamic Causal Modeling of fMRI Responses
por: Seghier, Mohamed L., et al.
Publicado: (2010) -
Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception
por: Dowlati, Ehsan, et al.
Publicado: (2016)