Cargando…

An ultralow power athermal silicon modulator

Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength–division–multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class l...

Descripción completa

Detalles Bibliográficos
Autores principales: Timurdogan, Erman, Sorace-Agaskar, Cheryl M., Sun, Jie, Shah Hosseini, Ehsan, Biberman, Aleksandr, Watts, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082639/
https://www.ncbi.nlm.nih.gov/pubmed/24915772
http://dx.doi.org/10.1038/ncomms5008
_version_ 1782324277702295552
author Timurdogan, Erman
Sorace-Agaskar, Cheryl M.
Sun, Jie
Shah Hosseini, Ehsan
Biberman, Aleksandr
Watts, Michael R.
author_facet Timurdogan, Erman
Sorace-Agaskar, Cheryl M.
Sun, Jie
Shah Hosseini, Ehsan
Biberman, Aleksandr
Watts, Michael R.
author_sort Timurdogan, Erman
collection PubMed
description Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength–division–multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s(−1)), low-voltage (0.5 V(PP)) and efficient 0.9 fJ per bit error-free operation. This low-energy high-speed operation is enabled by a record electro-optic response, obtained in a vertical p–n junction device that at 250 pm V(−1) (30 GHz V(−1)) is up to 10 times larger than prior demonstrations. In addition, this record electro-optic response is used to compensate for thermal drift over a 7.5 °C temperature range with little additional energy consumption (0.24 fJ per bit for a total energy consumption below 1.03 J per bit). The combined results of highly efficient modulation and electro-optic thermal compensation represent a new paradigm in modulator development and a major step towards single-digit femtojoule-class communications.
format Online
Article
Text
id pubmed-4082639
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-40826392014-07-10 An ultralow power athermal silicon modulator Timurdogan, Erman Sorace-Agaskar, Cheryl M. Sun, Jie Shah Hosseini, Ehsan Biberman, Aleksandr Watts, Michael R. Nat Commun Article Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength–division–multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s(−1)), low-voltage (0.5 V(PP)) and efficient 0.9 fJ per bit error-free operation. This low-energy high-speed operation is enabled by a record electro-optic response, obtained in a vertical p–n junction device that at 250 pm V(−1) (30 GHz V(−1)) is up to 10 times larger than prior demonstrations. In addition, this record electro-optic response is used to compensate for thermal drift over a 7.5 °C temperature range with little additional energy consumption (0.24 fJ per bit for a total energy consumption below 1.03 J per bit). The combined results of highly efficient modulation and electro-optic thermal compensation represent a new paradigm in modulator development and a major step towards single-digit femtojoule-class communications. Nature Pub. Group 2014-06-11 /pmc/articles/PMC4082639/ /pubmed/24915772 http://dx.doi.org/10.1038/ncomms5008 Text en Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Timurdogan, Erman
Sorace-Agaskar, Cheryl M.
Sun, Jie
Shah Hosseini, Ehsan
Biberman, Aleksandr
Watts, Michael R.
An ultralow power athermal silicon modulator
title An ultralow power athermal silicon modulator
title_full An ultralow power athermal silicon modulator
title_fullStr An ultralow power athermal silicon modulator
title_full_unstemmed An ultralow power athermal silicon modulator
title_short An ultralow power athermal silicon modulator
title_sort ultralow power athermal silicon modulator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082639/
https://www.ncbi.nlm.nih.gov/pubmed/24915772
http://dx.doi.org/10.1038/ncomms5008
work_keys_str_mv AT timurdoganerman anultralowpowerathermalsiliconmodulator
AT soraceagaskarcherylm anultralowpowerathermalsiliconmodulator
AT sunjie anultralowpowerathermalsiliconmodulator
AT shahhosseiniehsan anultralowpowerathermalsiliconmodulator
AT bibermanaleksandr anultralowpowerathermalsiliconmodulator
AT wattsmichaelr anultralowpowerathermalsiliconmodulator
AT timurdoganerman ultralowpowerathermalsiliconmodulator
AT soraceagaskarcherylm ultralowpowerathermalsiliconmodulator
AT sunjie ultralowpowerathermalsiliconmodulator
AT shahhosseiniehsan ultralowpowerathermalsiliconmodulator
AT bibermanaleksandr ultralowpowerathermalsiliconmodulator
AT wattsmichaelr ultralowpowerathermalsiliconmodulator