Cargando…
MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner
The Nucleosome Remodeling and Deacetylase (NuRD) complex is essential for embryonic development and pluripotent stem cell differentiation. In this study, we investigated whether NuRD is also involved in the reverse biological process of induction of pluripotency in neural stem cells. By knocking out...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082719/ https://www.ncbi.nlm.nih.gov/pubmed/24835571 http://dx.doi.org/10.1016/j.stem.2014.04.019 |
_version_ | 1782324287734022144 |
---|---|
author | dos Santos, Rodrigo L. Tosti, Luca Radzisheuskaya, Aliaksandra Caballero, Isabel M. Kaji, Keisuke Hendrich, Brian Silva, José C.R. |
author_facet | dos Santos, Rodrigo L. Tosti, Luca Radzisheuskaya, Aliaksandra Caballero, Isabel M. Kaji, Keisuke Hendrich, Brian Silva, José C.R. |
author_sort | dos Santos, Rodrigo L. |
collection | PubMed |
description | The Nucleosome Remodeling and Deacetylase (NuRD) complex is essential for embryonic development and pluripotent stem cell differentiation. In this study, we investigated whether NuRD is also involved in the reverse biological process of induction of pluripotency in neural stem cells. By knocking out MBD3, an essential scaffold subunit of the NuRD complex, at different time points in reprogramming, we found that efficient formation of reprogramming intermediates and induced pluripotent stem cells from neural stem cells requires NuRD activity. We also show that reprogramming of epiblast-derived stem cells to naive pluripotency requires NuRD complex function and that increased MBD3/NuRD levels can enhance reprogramming efficiency when coexpressed with the reprogramming factor NANOG. Our results therefore show that the MBD3/NuRD complex plays a key role in reprogramming in certain contexts and that a chromatin complex required for cell differentiation can also promote reversion back to a naive pluripotent cell state. |
format | Online Article Text |
id | pubmed-4082719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40827192014-07-05 MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner dos Santos, Rodrigo L. Tosti, Luca Radzisheuskaya, Aliaksandra Caballero, Isabel M. Kaji, Keisuke Hendrich, Brian Silva, José C.R. Cell Stem Cell Short Article The Nucleosome Remodeling and Deacetylase (NuRD) complex is essential for embryonic development and pluripotent stem cell differentiation. In this study, we investigated whether NuRD is also involved in the reverse biological process of induction of pluripotency in neural stem cells. By knocking out MBD3, an essential scaffold subunit of the NuRD complex, at different time points in reprogramming, we found that efficient formation of reprogramming intermediates and induced pluripotent stem cells from neural stem cells requires NuRD activity. We also show that reprogramming of epiblast-derived stem cells to naive pluripotency requires NuRD complex function and that increased MBD3/NuRD levels can enhance reprogramming efficiency when coexpressed with the reprogramming factor NANOG. Our results therefore show that the MBD3/NuRD complex plays a key role in reprogramming in certain contexts and that a chromatin complex required for cell differentiation can also promote reversion back to a naive pluripotent cell state. Cell Press 2014-07-03 /pmc/articles/PMC4082719/ /pubmed/24835571 http://dx.doi.org/10.1016/j.stem.2014.04.019 Text en Crown Copyright © 2014 Published by Elsevier Inc. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Short Article dos Santos, Rodrigo L. Tosti, Luca Radzisheuskaya, Aliaksandra Caballero, Isabel M. Kaji, Keisuke Hendrich, Brian Silva, José C.R. MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner |
title | MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner |
title_full | MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner |
title_fullStr | MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner |
title_full_unstemmed | MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner |
title_short | MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner |
title_sort | mbd3/nurd facilitates induction of pluripotency in a context-dependent manner |
topic | Short Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082719/ https://www.ncbi.nlm.nih.gov/pubmed/24835571 http://dx.doi.org/10.1016/j.stem.2014.04.019 |
work_keys_str_mv | AT dossantosrodrigol mbd3nurdfacilitatesinductionofpluripotencyinacontextdependentmanner AT tostiluca mbd3nurdfacilitatesinductionofpluripotencyinacontextdependentmanner AT radzisheuskayaaliaksandra mbd3nurdfacilitatesinductionofpluripotencyinacontextdependentmanner AT caballeroisabelm mbd3nurdfacilitatesinductionofpluripotencyinacontextdependentmanner AT kajikeisuke mbd3nurdfacilitatesinductionofpluripotencyinacontextdependentmanner AT hendrichbrian mbd3nurdfacilitatesinductionofpluripotencyinacontextdependentmanner AT silvajosecr mbd3nurdfacilitatesinductionofpluripotencyinacontextdependentmanner |