Cargando…
Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems
There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082941/ https://www.ncbi.nlm.nih.gov/pubmed/25045716 http://dx.doi.org/10.1155/2014/980501 |
_version_ | 1782324316207054848 |
---|---|
author | D'Agostino, Daniele Pasquale, Giulia Clematis, Andrea Maj, Carlo Mosca, Ettore Milanesi, Luciano Merelli, Ivan |
author_facet | D'Agostino, Daniele Pasquale, Giulia Clematis, Andrea Maj, Carlo Mosca, Ettore Milanesi, Luciano Merelli, Ivan |
author_sort | D'Agostino, Daniele |
collection | PubMed |
description | There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the Sτ-DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures. |
format | Online Article Text |
id | pubmed-4082941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-40829412014-07-20 Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems D'Agostino, Daniele Pasquale, Giulia Clematis, Andrea Maj, Carlo Mosca, Ettore Milanesi, Luciano Merelli, Ivan Biomed Res Int Research Article There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the Sτ-DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures. Hindawi Publishing Corporation 2014 2014-06-12 /pmc/articles/PMC4082941/ /pubmed/25045716 http://dx.doi.org/10.1155/2014/980501 Text en Copyright © 2014 Daniele D'Agostino et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article D'Agostino, Daniele Pasquale, Giulia Clematis, Andrea Maj, Carlo Mosca, Ettore Milanesi, Luciano Merelli, Ivan Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems |
title | Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems |
title_full | Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems |
title_fullStr | Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems |
title_full_unstemmed | Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems |
title_short | Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems |
title_sort | parallel solutions for voxel-based simulations of reaction-diffusion systems |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082941/ https://www.ncbi.nlm.nih.gov/pubmed/25045716 http://dx.doi.org/10.1155/2014/980501 |
work_keys_str_mv | AT dagostinodaniele parallelsolutionsforvoxelbasedsimulationsofreactiondiffusionsystems AT pasqualegiulia parallelsolutionsforvoxelbasedsimulationsofreactiondiffusionsystems AT clematisandrea parallelsolutionsforvoxelbasedsimulationsofreactiondiffusionsystems AT majcarlo parallelsolutionsforvoxelbasedsimulationsofreactiondiffusionsystems AT moscaettore parallelsolutionsforvoxelbasedsimulationsofreactiondiffusionsystems AT milanesiluciano parallelsolutionsforvoxelbasedsimulationsofreactiondiffusionsystems AT merelliivan parallelsolutionsforvoxelbasedsimulationsofreactiondiffusionsystems |