Cargando…

Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search

BACKGROUND: The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a par...

Descripción completa

Detalles Bibliográficos
Autores principales: Budnikova, Marianna, Habig, Jeffrey W, Lobo, Daniel, Cornia, Nicolas, Levin, Michael, Andersen, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083366/
https://www.ncbi.nlm.nih.gov/pubmed/24917489
http://dx.doi.org/10.1186/1471-2105-15-178
_version_ 1782324370592497664
author Budnikova, Marianna
Habig, Jeffrey W
Lobo, Daniel
Cornia, Nicolas
Levin, Michael
Andersen, Tim
author_facet Budnikova, Marianna
Habig, Jeffrey W
Lobo, Daniel
Cornia, Nicolas
Levin, Michael
Andersen, Tim
author_sort Budnikova, Marianna
collection PubMed
description BACKGROUND: The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard. Large amounts of data are available in regenerative biology, but little progress has been made in understanding how organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using a graph formalism. RESULTS: We are developing a model discovery framework that uses a cell-based modeling platform combined with evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation data. These graphs can then be validated and compared with target data from PlanformDB using the well-known graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions following bisection of the organism, and show that the automated model discovery framework is capable of searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB. CONCLUSION: The work presented here, including our algorithm for converting cell-based models into graphs for comparison with data stored in an external data repository, has made feasible the automated development, training, and validation of computational models using morphology-based data. This work is part of an ongoing project to automate the search process, which will greatly expand our ability to identify, consider, and test biological mechanisms in the field of regenerative biology.
format Online
Article
Text
id pubmed-4083366
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40833662014-07-18 Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search Budnikova, Marianna Habig, Jeffrey W Lobo, Daniel Cornia, Nicolas Levin, Michael Andersen, Tim BMC Bioinformatics Methodology Article BACKGROUND: The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard. Large amounts of data are available in regenerative biology, but little progress has been made in understanding how organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using a graph formalism. RESULTS: We are developing a model discovery framework that uses a cell-based modeling platform combined with evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation data. These graphs can then be validated and compared with target data from PlanformDB using the well-known graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions following bisection of the organism, and show that the automated model discovery framework is capable of searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB. CONCLUSION: The work presented here, including our algorithm for converting cell-based models into graphs for comparison with data stored in an external data repository, has made feasible the automated development, training, and validation of computational models using morphology-based data. This work is part of an ongoing project to automate the search process, which will greatly expand our ability to identify, consider, and test biological mechanisms in the field of regenerative biology. BioMed Central 2014-06-10 /pmc/articles/PMC4083366/ /pubmed/24917489 http://dx.doi.org/10.1186/1471-2105-15-178 Text en Copyright © 2014 Budnikova et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Methodology Article
Budnikova, Marianna
Habig, Jeffrey W
Lobo, Daniel
Cornia, Nicolas
Levin, Michael
Andersen, Tim
Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search
title Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search
title_full Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search
title_fullStr Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search
title_full_unstemmed Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search
title_short Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search
title_sort design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083366/
https://www.ncbi.nlm.nih.gov/pubmed/24917489
http://dx.doi.org/10.1186/1471-2105-15-178
work_keys_str_mv AT budnikovamarianna designofaflexiblecomponentgatheringalgorithmforconvertingcellbasedmodelstographrepresentationsforuseinevolutionarysearch
AT habigjeffreyw designofaflexiblecomponentgatheringalgorithmforconvertingcellbasedmodelstographrepresentationsforuseinevolutionarysearch
AT lobodaniel designofaflexiblecomponentgatheringalgorithmforconvertingcellbasedmodelstographrepresentationsforuseinevolutionarysearch
AT cornianicolas designofaflexiblecomponentgatheringalgorithmforconvertingcellbasedmodelstographrepresentationsforuseinevolutionarysearch
AT levinmichael designofaflexiblecomponentgatheringalgorithmforconvertingcellbasedmodelstographrepresentationsforuseinevolutionarysearch
AT andersentim designofaflexiblecomponentgatheringalgorithmforconvertingcellbasedmodelstographrepresentationsforuseinevolutionarysearch