Cargando…

microRNA-99a acts as a tumor suppressor and is down-regulated in bladder cancer

BACKGROUND: Increasing evidences have documented that microRNAs (miRNAs) act as oncogenes or tumor suppressors in a variety types of cancer. The discovery of tumor associated miRNAs in serum of patients gives rise to extensive investigation of circulating miRNAs in many human cancers which support t...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Yougang, Kang, Yongming, He, Yue, Liu, Jun, Liang, Bo, Yang, Ping, Yu, Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083872/
https://www.ncbi.nlm.nih.gov/pubmed/24957100
http://dx.doi.org/10.1186/1471-2490-14-50
Descripción
Sumario:BACKGROUND: Increasing evidences have documented that microRNAs (miRNAs) act as oncogenes or tumor suppressors in a variety types of cancer. The discovery of tumor associated miRNAs in serum of patients gives rise to extensive investigation of circulating miRNAs in many human cancers which support the use of plasma/serum miRNAs as noninvasive means of cancer detection. However, the aberrant expression of miRNAs and the circulating miRNAs in bladder cancer are less reported. METHODS: We used Taqman probe stem-loop real-time PCR to accurately measure the levels of miR-99a in bladder cancer cell lines, 100 pairs of bladder cancer tissues, the adjacent non-neoplastic tissues and plasma collected from bladder cancer patients or control patients. miR-99a mimics were re-introduced into bladder cancer cells to investigate its role on regulating cell proliferation which was measured by CCK-8 assay and cell cycle analysis. RESULTS: miR-99a was significantly down-regulated in bladder cancer tissues, and even the lower expression of miR-99a was correlative with the more aggressive phenotypes of bladder cancer. Meanwhile, enforced expression of miR-99a can inhibit the cell proliferation of bladder cancer cells. Furthermore, investigation of the expression of miR-99a in plasma of bladder cancer patients showed that miR-99a was also decreased in plasma of bladder cancer patients. The results strongly supported miR-99a as the potential diagnostic marker of bladder cancer. CONCLUSIONS: Our data indicated that miR-99a might act as a tumor suppressor in bladder cancer and was significantly down-regulated in development of bladder cancer.