Cargando…

Emphysema early diagnosis using X-ray diffraction enhanced imaging at synchrotron light source

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide, and emphysema is a common component of COPD. Currently, it is very difficult to detect early stage emphysema using conventional radiographic imaging without contrast agents, be...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Linan, Li, Jun, Jian, Wushuai, Zhang, Lu, Wu, Mingshu, Shi, Hongli, Luo, Shuqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084497/
https://www.ncbi.nlm.nih.gov/pubmed/24952622
http://dx.doi.org/10.1186/1475-925X-13-82
Descripción
Sumario:BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide, and emphysema is a common component of COPD. Currently, it is very difficult to detect early stage emphysema using conventional radiographic imaging without contrast agents, because the change in X-ray attenuation is not detectable with absorption-based radiography. Compared with the absorption-based CT, phase contrast imaging has more advantages in soft tissue imaging, because of its high spatial resolution and contrast. METHODS: In this article, we used diffraction enhanced imaging (DEI) method to get the images of early stage emphysematous and healthy samples, then extract X-ray absorption, refraction, and ultra-small-angle X-ray scattering (USAXS) information from DEI images using multiple image radiography (MIR). We combined the absorption image with the USAXS image by a scatter plot. The critical threshold in the scatter plot was calibrated using the linear discriminant function in the pattern recognition. RESULTS: USAXS image was sensitive to the change of tissue micro-structure, it could show the lesions which were invisible in the absorption image. Combined with the absorption-based image, the USAXS information enabled better discrimination between healthy and emphysematous lung tissue in a mouse model. The false-color images demonstrated that our method was capable of classifying healthy and emphysematous tissues. CONCLUSION: Here we present USAXS images of early stage emphysematous and healthy samples, where the dependence of the USAXS signal on micro-structures of biomedical samples leads to improved diagnosis of emphysema in lung radiographs.