Cargando…
Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo
Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D- pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neurop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084628/ https://www.ncbi.nlm.nih.gov/pubmed/24991917 http://dx.doi.org/10.1371/journal.pone.0100126 |
Sumario: | Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D- pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neuroprotective properties. The purpose of the current study was to investigate the neuroprotective effects of GlcNAc-Sal against oxygen–glucose deprivation-reperfusion (OGD-R)-induced neurotoxicity in vitro and global cerebral ischemia-reperfusion (GCI-R) injury in vivo. Cell viability tests and Hoechst 33342 staining confirmed that GlcNAc-Sal pretreatment markedly attenuated OGD-R induced apoptotic cell death in immortalized mouse hippocampal HT22 cells. Western blot, immunofluorescence and PCR analyses revealed that GlcNAc-Sal pretreatment restored the balance of pro- and anti-apoptotic proteins and inhibited the activation of caspase-3 and PARP induced by OGD-R treatment. Further analyses showed that GlcNAc-Sal pretreatment antagonized reactive oxygen species (ROS) generation, iNOS-derived NO production and NO-related apoptotic cell death during OGD-R stimulation. GCI-R was induced by bilateral common carotid artery occlusion (BCCAO) and reperfusion in mice in vivo. Western blot analysis showed that GlcNAc-Sal pretreatment decreased the expression of caspase-3 and increased the expression of Bcl-2 (B-cell lymphoma 2)/Bax (Bcl-2-associated X protein) induced by GCI-R treatment. Our findings suggest that GlcNAc-Sal pretreatment prevents brain ischemia reperfusion injury by the direct or indirect suppression of cell apoptosis and GlcNAc-Sal could be developed as a broad-spectrum agent for the prevention and/or treatment of cerebral ischemic injury. |
---|