Cargando…

Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo

Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D- pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neurop...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xia, Deng, Aiqing, Zhou, Tianqiu, Ding, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084628/
https://www.ncbi.nlm.nih.gov/pubmed/24991917
http://dx.doi.org/10.1371/journal.pone.0100126
_version_ 1782324558218395648
author Chen, Xia
Deng, Aiqing
Zhou, Tianqiu
Ding, Fei
author_facet Chen, Xia
Deng, Aiqing
Zhou, Tianqiu
Ding, Fei
author_sort Chen, Xia
collection PubMed
description Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D- pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neuroprotective properties. The purpose of the current study was to investigate the neuroprotective effects of GlcNAc-Sal against oxygen–glucose deprivation-reperfusion (OGD-R)-induced neurotoxicity in vitro and global cerebral ischemia-reperfusion (GCI-R) injury in vivo. Cell viability tests and Hoechst 33342 staining confirmed that GlcNAc-Sal pretreatment markedly attenuated OGD-R induced apoptotic cell death in immortalized mouse hippocampal HT22 cells. Western blot, immunofluorescence and PCR analyses revealed that GlcNAc-Sal pretreatment restored the balance of pro- and anti-apoptotic proteins and inhibited the activation of caspase-3 and PARP induced by OGD-R treatment. Further analyses showed that GlcNAc-Sal pretreatment antagonized reactive oxygen species (ROS) generation, iNOS-derived NO production and NO-related apoptotic cell death during OGD-R stimulation. GCI-R was induced by bilateral common carotid artery occlusion (BCCAO) and reperfusion in mice in vivo. Western blot analysis showed that GlcNAc-Sal pretreatment decreased the expression of caspase-3 and increased the expression of Bcl-2 (B-cell lymphoma 2)/Bax (Bcl-2-associated X protein) induced by GCI-R treatment. Our findings suggest that GlcNAc-Sal pretreatment prevents brain ischemia reperfusion injury by the direct or indirect suppression of cell apoptosis and GlcNAc-Sal could be developed as a broad-spectrum agent for the prevention and/or treatment of cerebral ischemic injury.
format Online
Article
Text
id pubmed-4084628
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-40846282014-07-10 Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo Chen, Xia Deng, Aiqing Zhou, Tianqiu Ding, Fei PLoS One Research Article Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D- pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neuroprotective properties. The purpose of the current study was to investigate the neuroprotective effects of GlcNAc-Sal against oxygen–glucose deprivation-reperfusion (OGD-R)-induced neurotoxicity in vitro and global cerebral ischemia-reperfusion (GCI-R) injury in vivo. Cell viability tests and Hoechst 33342 staining confirmed that GlcNAc-Sal pretreatment markedly attenuated OGD-R induced apoptotic cell death in immortalized mouse hippocampal HT22 cells. Western blot, immunofluorescence and PCR analyses revealed that GlcNAc-Sal pretreatment restored the balance of pro- and anti-apoptotic proteins and inhibited the activation of caspase-3 and PARP induced by OGD-R treatment. Further analyses showed that GlcNAc-Sal pretreatment antagonized reactive oxygen species (ROS) generation, iNOS-derived NO production and NO-related apoptotic cell death during OGD-R stimulation. GCI-R was induced by bilateral common carotid artery occlusion (BCCAO) and reperfusion in mice in vivo. Western blot analysis showed that GlcNAc-Sal pretreatment decreased the expression of caspase-3 and increased the expression of Bcl-2 (B-cell lymphoma 2)/Bax (Bcl-2-associated X protein) induced by GCI-R treatment. Our findings suggest that GlcNAc-Sal pretreatment prevents brain ischemia reperfusion injury by the direct or indirect suppression of cell apoptosis and GlcNAc-Sal could be developed as a broad-spectrum agent for the prevention and/or treatment of cerebral ischemic injury. Public Library of Science 2014-07-03 /pmc/articles/PMC4084628/ /pubmed/24991917 http://dx.doi.org/10.1371/journal.pone.0100126 Text en © 2014 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Chen, Xia
Deng, Aiqing
Zhou, Tianqiu
Ding, Fei
Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo
title Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo
title_full Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo
title_fullStr Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo
title_full_unstemmed Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo
title_short Pretreatment with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside Attenuates Cerebral Ischemia/Reperfusion-Induced Injury In Vitro and In Vivo
title_sort pretreatment with 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside attenuates cerebral ischemia/reperfusion-induced injury in vitro and in vivo
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084628/
https://www.ncbi.nlm.nih.gov/pubmed/24991917
http://dx.doi.org/10.1371/journal.pone.0100126
work_keys_str_mv AT chenxia pretreatmentwith24methoxyphenylethyl2acetamido2deoxybdpyranosideattenuatescerebralischemiareperfusioninducedinjuryinvitroandinvivo
AT dengaiqing pretreatmentwith24methoxyphenylethyl2acetamido2deoxybdpyranosideattenuatescerebralischemiareperfusioninducedinjuryinvitroandinvivo
AT zhoutianqiu pretreatmentwith24methoxyphenylethyl2acetamido2deoxybdpyranosideattenuatescerebralischemiareperfusioninducedinjuryinvitroandinvivo
AT dingfei pretreatmentwith24methoxyphenylethyl2acetamido2deoxybdpyranosideattenuatescerebralischemiareperfusioninducedinjuryinvitroandinvivo