Cargando…
Changes in Corticomotor Excitability and Intracortical Inhibition of the Primary Motor Cortex Forearm Area Induced by Anodal tDCS
OBJECTIVE: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR) and if these aftereffects...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084808/ https://www.ncbi.nlm.nih.gov/pubmed/24999827 http://dx.doi.org/10.1371/journal.pone.0101496 |
Sumario: | OBJECTIVE: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR) and if these aftereffects can be successfully assessed during controlled muscle contraction. METHODS: We implemented a double blind cross-over design in which participants (n = 16) completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm(2)) anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle. RESULTS: Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2) were removed. We found no changes in the cortical silent period. CONCLUSION: These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle. |
---|