Cargando…
Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy
BACKGROUND: Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, TQ elici...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085014/ https://www.ncbi.nlm.nih.gov/pubmed/25000169 http://dx.doi.org/10.1371/journal.pone.0101579 |
_version_ | 1782324592716546048 |
---|---|
author | Chu, Shu-Chen Hsieh, Yih-Shou Yu, Cheng-Chia Lai, Yi-Yeh Chen, Pei-Ni |
author_facet | Chu, Shu-Chen Hsieh, Yih-Shou Yu, Cheng-Chia Lai, Yi-Yeh Chen, Pei-Ni |
author_sort | Chu, Shu-Chen |
collection | PubMed |
description | BACKGROUND: Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis. CONCLUSIONS: These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies. |
format | Online Article Text |
id | pubmed-4085014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40850142014-07-09 Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy Chu, Shu-Chen Hsieh, Yih-Shou Yu, Cheng-Chia Lai, Yi-Yeh Chen, Pei-Ni PLoS One Research Article BACKGROUND: Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis. CONCLUSIONS: These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies. Public Library of Science 2014-07-07 /pmc/articles/PMC4085014/ /pubmed/25000169 http://dx.doi.org/10.1371/journal.pone.0101579 Text en © 2014 Chu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chu, Shu-Chen Hsieh, Yih-Shou Yu, Cheng-Chia Lai, Yi-Yeh Chen, Pei-Ni Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy |
title | Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy |
title_full | Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy |
title_fullStr | Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy |
title_full_unstemmed | Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy |
title_short | Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy |
title_sort | thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and lc3-ii activation-dependent autophagy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085014/ https://www.ncbi.nlm.nih.gov/pubmed/25000169 http://dx.doi.org/10.1371/journal.pone.0101579 |
work_keys_str_mv | AT chushuchen thymoquinoneinducescelldeathinhumansquamouscarcinomacellsviacaspaseactivationdependentapoptosisandlc3iiactivationdependentautophagy AT hsiehyihshou thymoquinoneinducescelldeathinhumansquamouscarcinomacellsviacaspaseactivationdependentapoptosisandlc3iiactivationdependentautophagy AT yuchengchia thymoquinoneinducescelldeathinhumansquamouscarcinomacellsviacaspaseactivationdependentapoptosisandlc3iiactivationdependentautophagy AT laiyiyeh thymoquinoneinducescelldeathinhumansquamouscarcinomacellsviacaspaseactivationdependentapoptosisandlc3iiactivationdependentautophagy AT chenpeini thymoquinoneinducescelldeathinhumansquamouscarcinomacellsviacaspaseactivationdependentapoptosisandlc3iiactivationdependentautophagy |