Cargando…

Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method

BACKGROUND: Biochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Székely, Tamás, Burrage, Kevin, Zygalakis, Konstantinos C, Barrio, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085235/
https://www.ncbi.nlm.nih.gov/pubmed/24939084
http://dx.doi.org/10.1186/1752-0509-8-71
_version_ 1782324626785828864
author Székely, Tamás
Burrage, Kevin
Zygalakis, Konstantinos C
Barrio, Manuel
author_facet Székely, Tamás
Burrage, Kevin
Zygalakis, Konstantinos C
Barrio, Manuel
author_sort Székely, Tamás
collection PubMed
description BACKGROUND: Biochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and accurate. The Bulirsch-Stoer method is an established method for solving ordinary differential equations that possesses both of these qualities. RESULTS: In this paper, we present the Stochastic Bulirsch-Stoer method, a new numerical method for simulating discrete chemical reaction systems, inspired by its deterministic counterpart. It is able to achieve an excellent efficiency due to the fact that it is based on an approach with high deterministic order, allowing for larger stepsizes and leading to fast simulations. We compare it to the Euler τ-leap, as well as two more recent τ-leap methods, on a number of example problems, and find that as well as being very accurate, our method is the most robust, in terms of efficiency, of all the methods considered in this paper. The problems it is most suited for are those with increased populations that would be too slow to simulate using Gillespie’s stochastic simulation algorithm. For such problems, it is likely to achieve higher weak order in the moments. CONCLUSIONS: The Stochastic Bulirsch-Stoer method is a novel stochastic solver that can be used for fast and accurate simulations. Crucially, compared to other similar methods, it better retains its high accuracy when the timesteps are increased. Thus the Stochastic Bulirsch-Stoer method is both computationally efficient and robust. These are key properties for any stochastic numerical method, as they must typically run many thousands of simulations.
format Online
Article
Text
id pubmed-4085235
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40852352014-07-24 Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method Székely, Tamás Burrage, Kevin Zygalakis, Konstantinos C Barrio, Manuel BMC Syst Biol Methodology Article BACKGROUND: Biochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and accurate. The Bulirsch-Stoer method is an established method for solving ordinary differential equations that possesses both of these qualities. RESULTS: In this paper, we present the Stochastic Bulirsch-Stoer method, a new numerical method for simulating discrete chemical reaction systems, inspired by its deterministic counterpart. It is able to achieve an excellent efficiency due to the fact that it is based on an approach with high deterministic order, allowing for larger stepsizes and leading to fast simulations. We compare it to the Euler τ-leap, as well as two more recent τ-leap methods, on a number of example problems, and find that as well as being very accurate, our method is the most robust, in terms of efficiency, of all the methods considered in this paper. The problems it is most suited for are those with increased populations that would be too slow to simulate using Gillespie’s stochastic simulation algorithm. For such problems, it is likely to achieve higher weak order in the moments. CONCLUSIONS: The Stochastic Bulirsch-Stoer method is a novel stochastic solver that can be used for fast and accurate simulations. Crucially, compared to other similar methods, it better retains its high accuracy when the timesteps are increased. Thus the Stochastic Bulirsch-Stoer method is both computationally efficient and robust. These are key properties for any stochastic numerical method, as they must typically run many thousands of simulations. BioMed Central 2014-06-18 /pmc/articles/PMC4085235/ /pubmed/24939084 http://dx.doi.org/10.1186/1752-0509-8-71 Text en Copyright © 2014 Székely et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Methodology Article
Székely, Tamás
Burrage, Kevin
Zygalakis, Konstantinos C
Barrio, Manuel
Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method
title Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method
title_full Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method
title_fullStr Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method
title_full_unstemmed Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method
title_short Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method
title_sort efficient simulation of stochastic chemical kinetics with the stochastic bulirsch-stoer extrapolation method
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085235/
https://www.ncbi.nlm.nih.gov/pubmed/24939084
http://dx.doi.org/10.1186/1752-0509-8-71
work_keys_str_mv AT szekelytamas efficientsimulationofstochasticchemicalkineticswiththestochasticbulirschstoerextrapolationmethod
AT burragekevin efficientsimulationofstochasticchemicalkineticswiththestochasticbulirschstoerextrapolationmethod
AT zygalakiskonstantinosc efficientsimulationofstochasticchemicalkineticswiththestochasticbulirschstoerextrapolationmethod
AT barriomanuel efficientsimulationofstochasticchemicalkineticswiththestochasticbulirschstoerextrapolationmethod