Cargando…
Alkemio: association of chemicals with biomedical topics by text and data mining
The PubMed(®) database of biomedical citations allows the retrieval of scientific articles studying the function of chemicals in biology and medicine. Mining millions of available citations to search reported associations between chemicals and topics of interest would require substantial human time....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086102/ https://www.ncbi.nlm.nih.gov/pubmed/24838570 http://dx.doi.org/10.1093/nar/gku432 |
_version_ | 1782324768583712768 |
---|---|
author | Gijón-Correas, José A. Andrade-Navarro, Miguel A. Fontaine, Jean F. |
author_facet | Gijón-Correas, José A. Andrade-Navarro, Miguel A. Fontaine, Jean F. |
author_sort | Gijón-Correas, José A. |
collection | PubMed |
description | The PubMed(®) database of biomedical citations allows the retrieval of scientific articles studying the function of chemicals in biology and medicine. Mining millions of available citations to search reported associations between chemicals and topics of interest would require substantial human time. We have implemented the Alkemio text mining web tool and SOAP web service to help in this task. The tool uses biomedical articles discussing chemicals (including drugs), predicts their relatedness to the query topic with a naïve Bayesian classifier and ranks all chemicals by P-values computed from random simulations. Benchmarks on seven human pathways showed good retrieval performance (areas under the receiver operating characteristic curves ranged from 73.6 to 94.5%). Comparison with existing tools to retrieve chemicals associated to eight diseases showed the higher precision and recall of Alkemio when considering the top 10 candidate chemicals. Alkemio is a high performing web tool ranking chemicals for any biomedical topics and it is free to non-commercial users. Availability: http://cbdm.mdc-berlin.de/∼medlineranker/cms/alkemio. |
format | Online Article Text |
id | pubmed-4086102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40861022014-12-01 Alkemio: association of chemicals with biomedical topics by text and data mining Gijón-Correas, José A. Andrade-Navarro, Miguel A. Fontaine, Jean F. Nucleic Acids Res Article The PubMed(®) database of biomedical citations allows the retrieval of scientific articles studying the function of chemicals in biology and medicine. Mining millions of available citations to search reported associations between chemicals and topics of interest would require substantial human time. We have implemented the Alkemio text mining web tool and SOAP web service to help in this task. The tool uses biomedical articles discussing chemicals (including drugs), predicts their relatedness to the query topic with a naïve Bayesian classifier and ranks all chemicals by P-values computed from random simulations. Benchmarks on seven human pathways showed good retrieval performance (areas under the receiver operating characteristic curves ranged from 73.6 to 94.5%). Comparison with existing tools to retrieve chemicals associated to eight diseases showed the higher precision and recall of Alkemio when considering the top 10 candidate chemicals. Alkemio is a high performing web tool ranking chemicals for any biomedical topics and it is free to non-commercial users. Availability: http://cbdm.mdc-berlin.de/∼medlineranker/cms/alkemio. Oxford University Press 2014-07-01 2014-05-16 /pmc/articles/PMC4086102/ /pubmed/24838570 http://dx.doi.org/10.1093/nar/gku432 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Article Gijón-Correas, José A. Andrade-Navarro, Miguel A. Fontaine, Jean F. Alkemio: association of chemicals with biomedical topics by text and data mining |
title | Alkemio: association of chemicals with biomedical topics by text and data mining |
title_full | Alkemio: association of chemicals with biomedical topics by text and data mining |
title_fullStr | Alkemio: association of chemicals with biomedical topics by text and data mining |
title_full_unstemmed | Alkemio: association of chemicals with biomedical topics by text and data mining |
title_short | Alkemio: association of chemicals with biomedical topics by text and data mining |
title_sort | alkemio: association of chemicals with biomedical topics by text and data mining |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086102/ https://www.ncbi.nlm.nih.gov/pubmed/24838570 http://dx.doi.org/10.1093/nar/gku432 |
work_keys_str_mv | AT gijoncorreasjosea alkemioassociationofchemicalswithbiomedicaltopicsbytextanddatamining AT andradenavarromiguela alkemioassociationofchemicalswithbiomedicaltopicsbytextanddatamining AT fontainejeanf alkemioassociationofchemicalswithbiomedicaltopicsbytextanddatamining |