Cargando…

GalaxySite: ligand-binding-site prediction by using molecular docking

Knowledge of ligand-binding sites of proteins provides invaluable information for functional studies, drug design and protein design. Recent progress in ligand-binding-site prediction methods has demonstrated that using information from similar proteins of known structures can improve predictions. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Heo, Lim, Shin, Woong-Hee, Lee, Myeong Sup, Seok, Chaok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086128/
https://www.ncbi.nlm.nih.gov/pubmed/24753427
http://dx.doi.org/10.1093/nar/gku321
Descripción
Sumario:Knowledge of ligand-binding sites of proteins provides invaluable information for functional studies, drug design and protein design. Recent progress in ligand-binding-site prediction methods has demonstrated that using information from similar proteins of known structures can improve predictions. The GalaxySite web server, freely accessible at http://galaxy.seoklab.org/site, combines such information with molecular docking for more precise binding-site prediction for non-metal ligands. According to the recent critical assessments of structure prediction methods held in 2010 and 2012, this server was found to be superior or comparable to other state-of-the-art programs in the category of ligand-binding-site prediction. A strong merit of the GalaxySite program is that it provides additional predictions on binding ligands and their binding poses in terms of the optimized 3D coordinates of the protein–ligand complexes, whereas other methods predict only identities of binding-site residues or copy binding geometry from similar proteins. The additional information on the specific binding geometry would be very useful for applications in functional studies and computer-aided drug discovery.