Cargando…

Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upo...

Descripción completa

Detalles Bibliográficos
Autores principales: Peres, G.B., Juliano, M.A., Aguiar, J.A.K., Michelacci, Y.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Associação Brasileira de Divulgação Científica 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086171/
https://www.ncbi.nlm.nih.gov/pubmed/24820066
http://dx.doi.org/10.1590/1414-431X20143386
Descripción
Sumario:It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10(th) or the 30(th) day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10(th), but not on the 30(th) day. Sulfatase decreased 30% on the 30(th) day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.