Cargando…
Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation
Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087184/ https://www.ncbi.nlm.nih.gov/pubmed/25009788 http://dx.doi.org/10.1016/j.redox.2014.06.007 |
_version_ | 1782324892517007360 |
---|---|
author | Subramanian, Mahesh Goswami, Manish Chakraborty, Saikat Jawali, Narendra |
author_facet | Subramanian, Mahesh Goswami, Manish Chakraborty, Saikat Jawali, Narendra |
author_sort | Subramanian, Mahesh |
collection | PubMed |
description | Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event. |
format | Online Article Text |
id | pubmed-4087184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-40871842014-07-09 Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation Subramanian, Mahesh Goswami, Manish Chakraborty, Saikat Jawali, Narendra Redox Biol Research Paper Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event. Elsevier 2014-06-17 /pmc/articles/PMC4087184/ /pubmed/25009788 http://dx.doi.org/10.1016/j.redox.2014.06.007 Text en © 2014 Published by Elsevier B.V. All rights reserved. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Research Paper Subramanian, Mahesh Goswami, Manish Chakraborty, Saikat Jawali, Narendra Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation |
title | Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation |
title_full | Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation |
title_fullStr | Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation |
title_full_unstemmed | Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation |
title_short | Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation |
title_sort | resveratrol induced inhibition of escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087184/ https://www.ncbi.nlm.nih.gov/pubmed/25009788 http://dx.doi.org/10.1016/j.redox.2014.06.007 |
work_keys_str_mv | AT subramanianmahesh resveratrolinducedinhibitionofescherichiacoliproceedsviamembraneoxidationandindependentofdiffusiblereactiveoxygenspeciesgeneration AT goswamimanish resveratrolinducedinhibitionofescherichiacoliproceedsviamembraneoxidationandindependentofdiffusiblereactiveoxygenspeciesgeneration AT chakrabortysaikat resveratrolinducedinhibitionofescherichiacoliproceedsviamembraneoxidationandindependentofdiffusiblereactiveoxygenspeciesgeneration AT jawalinarendra resveratrolinducedinhibitionofescherichiacoliproceedsviamembraneoxidationandindependentofdiffusiblereactiveoxygenspeciesgeneration |