Cargando…
SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects
BACKGROUND: Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Al...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087246/ https://www.ncbi.nlm.nih.gov/pubmed/24964954 http://dx.doi.org/10.1186/1471-2105-15-218 |
_version_ | 1782324901915394048 |
---|---|
author | Kloster, Michael Kauer, Gerhard Beszteri, Bánk |
author_facet | Kloster, Michael Kauer, Gerhard Beszteri, Bánk |
author_sort | Kloster, Michael |
collection | PubMed |
description | BACKGROUND: Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. RESULTS: The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. CONCLUSIONS: Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems. |
format | Online Article Text |
id | pubmed-4087246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40872462014-07-23 SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects Kloster, Michael Kauer, Gerhard Beszteri, Bánk BMC Bioinformatics Software BACKGROUND: Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. RESULTS: The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. CONCLUSIONS: Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems. BioMed Central 2014-06-25 /pmc/articles/PMC4087246/ /pubmed/24964954 http://dx.doi.org/10.1186/1471-2105-15-218 Text en Copyright © 2014 Kloster et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Software Kloster, Michael Kauer, Gerhard Beszteri, Bánk SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects |
title | SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects |
title_full | SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects |
title_fullStr | SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects |
title_full_unstemmed | SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects |
title_short | SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects |
title_sort | sherpa: an image segmentation and outline feature extraction tool for diatoms and other objects |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087246/ https://www.ncbi.nlm.nih.gov/pubmed/24964954 http://dx.doi.org/10.1186/1471-2105-15-218 |
work_keys_str_mv | AT klostermichael sherpaanimagesegmentationandoutlinefeatureextractiontoolfordiatomsandotherobjects AT kauergerhard sherpaanimagesegmentationandoutlinefeatureextractiontoolfordiatomsandotherobjects AT beszteribank sherpaanimagesegmentationandoutlinefeatureextractiontoolfordiatomsandotherobjects |