Cargando…
Enhanced Performance by Time-Frequency-Phase Feature for EEG-Based BCI Systems
We introduce a new motor parameter imagery paradigm using clench speed and clench force motor imagery. The time-frequency-phase features are extracted from mu rhythm and beta rhythms, and the features are optimized using three process methods: no-scaled feature using “MIFS” feature selection criteri...
Autores principales: | Xu, Baolei, Fu, Yunfa, Shi, Gang, Yin, Xuxian, Wang, Zhidong, Li, Hongyi, Jiang, Changhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087262/ https://www.ncbi.nlm.nih.gov/pubmed/25045733 http://dx.doi.org/10.1155/2014/420561 |
Ejemplares similares
-
Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications
por: Wang, Yubo, et al.
Publicado: (2013) -
Effects of user mental state on EEG-BCI performance
por: Myrden, Andrew, et al.
Publicado: (2015) -
On the Quantification of SSVEP Frequency Responses in Human EEG in Realistic BCI Conditions
por: Kuś, Rafał, et al.
Publicado: (2013) -
Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
por: Cui, Yujie, et al.
Publicado: (2023) -
Feature Selection Applying Statistical and Neurofuzzy Methods to EEG-Based BCI
por: Martinez-Leon, Juan-Antonio, et al.
Publicado: (2015)