Cargando…
On the System of Diophantine Equations x (2) − 6y (2) = −5 and x = az (2) − b
Mignotte and Pethö used the Siegel-Baker method to find all the integral solutions (x, y, z) of the system of Diophantine equations x (2) − 6y (2) = −5 and x = 2z (2) − 1. In this paper, we extend this result and put forward a generalized method which can completely solve the family of systems of Di...
Autores principales: | Zhang, Silan, Chen, Jianhua, Hu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087266/ https://www.ncbi.nlm.nih.gov/pubmed/25045739 http://dx.doi.org/10.1155/2014/632617 |
Ejemplares similares
-
The Exponential Diophantine Equation 2(x) + b
(y) = c
(z)
por: Yu, Yahui, et al.
Publicado: (2014) -
The Diophantine Equation 8(x) + p
(y) = z
(2)
por: Qi, Lan, et al.
Publicado: (2015) -
Diophantine approximations and Diophantine equations
por: Schmidt, Wolfgang M
Publicado: (1991) -
Diophantine equations
por: Mordell, L J
Publicado: (1969) -
Analytic methods for diophantine equations and diophantine inequalities
por: Davenport, H
Publicado: (2005)