Cargando…

Treating inborn errors of liver metabolism with stem cells: current clinical development

Advanced therapies including stem cells are currently a major biotechnological development. Adult liver stem cells can differentiate into hepatocyte like cells and be infused in the recipient’s liver to bring a missing metabolic function. These cells can be produced in large quantities in vitro. All...

Descripción completa

Detalles Bibliográficos
Autor principal: Sokal, Etienne Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4088990/
https://www.ncbi.nlm.nih.gov/pubmed/24668464
http://dx.doi.org/10.1007/s10545-014-9691-x
Descripción
Sumario:Advanced therapies including stem cells are currently a major biotechnological development. Adult liver stem cells can differentiate into hepatocyte like cells and be infused in the recipient’s liver to bring a missing metabolic function. These cells can be produced in large quantities in vitro. Allogeneic stem cells are required to treat genetic diseases, and this approach allows to use one single source of tissue to treat different diseases and many recipients. Mesenchymal stem cells can in addition play an immunomodulatory and anti-inflammatory role and possibly prevent the accumulation of fibrous tissue in the liver. From a regulatory point of view, stem cells are considered as medicinal products, and must undergo a pharmaceutical development that goes beyond the research and proof-of-concept phases. Here, we review the track followed from the first hepatocyte transplantation in 2000 to the next generation product issued from stem cell technology, and the start of EMA approved clinical trials to evaluate the safety and potency of liver stem cells for the treatment of inborn errors of the liver metabolism.