Cargando…
L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells
BACKGROUND: The carnitine acetyltransferase (CrAT) is a mitochondrial matrix protein that directly influences intramitochondrial acetyl-CoA pools. Murine CrAT is encoded by a single gene located in the opposite orientation head to head to the PPP2R4 gene, sharing a very condensed bi-directional prom...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089027/ https://www.ncbi.nlm.nih.gov/pubmed/24962334 http://dx.doi.org/10.1186/1471-2164-15-514 |
_version_ | 1782325061193039872 |
---|---|
author | Kienesberger, Klemens Pordes, Aniko Ginta Völk, Thomas Georg Hofbauer, Reinhold |
author_facet | Kienesberger, Klemens Pordes, Aniko Ginta Völk, Thomas Georg Hofbauer, Reinhold |
author_sort | Kienesberger, Klemens |
collection | PubMed |
description | BACKGROUND: The carnitine acetyltransferase (CrAT) is a mitochondrial matrix protein that directly influences intramitochondrial acetyl-CoA pools. Murine CrAT is encoded by a single gene located in the opposite orientation head to head to the PPP2R4 gene, sharing a very condensed bi-directional promoter. Since decreased CrAT expression is correlated with metabolic inflexibility and subsequent pathological consequences, our aim was to reveal and define possible activators of CrAT transcription in the normal embryonic murine liver cell line BNL CL. 2 and via which nuclear factors based on key metabolites mainly regulate hepatic expression of CrAT. Here we describe a functional characterization of the CrAT promoter region under conditions of L-carnitine deficiency and supplementation as well as fenofibrate induction in cell culture cells. RESULTS: The murine CrAT promoter displays some characteristics of a housekeeping gene: it lacks a TATA-box, is very GC-rich and harbors two Sp1 binding sites. Analysis of the promoter activity of CrAT by luciferase assays uncovered a L-carnitine sensitive region within −342 bp of the transcription start. Electrophoretic mobility shift and supershift assays proved the sequence element (−228/-222) to be an L-carnitine sensitive RXRα binding site, which also showed sensitivity to application of anti-PPARα and anti-PPARbp antibodies. In addition we analysed this specific RXRα/PPARα site by Southwestern Blotting technique and could pin down three protein factors binding to this promoter element. By qPCR we could quantify the nutrigenomic effect of L-carnitine itself and fenofibrate. CONCLUSIONS: Our results indicate a cooperative interplay of L-carnitine and PPARα in transcriptional regulation of murine CrAT, which is of nutrigenomical relevance. We created experimental proof that the muCrAT gene clearly is a PPARα target. Both L-carnitine and fenofibrate are inducers of CrAT transcripts, but the important hyperlipidemic drug fenofibrate being a more potent one, as a consequence of its pharmacological interaction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-514) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4089027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40890272014-07-23 L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells Kienesberger, Klemens Pordes, Aniko Ginta Völk, Thomas Georg Hofbauer, Reinhold BMC Genomics Research Article BACKGROUND: The carnitine acetyltransferase (CrAT) is a mitochondrial matrix protein that directly influences intramitochondrial acetyl-CoA pools. Murine CrAT is encoded by a single gene located in the opposite orientation head to head to the PPP2R4 gene, sharing a very condensed bi-directional promoter. Since decreased CrAT expression is correlated with metabolic inflexibility and subsequent pathological consequences, our aim was to reveal and define possible activators of CrAT transcription in the normal embryonic murine liver cell line BNL CL. 2 and via which nuclear factors based on key metabolites mainly regulate hepatic expression of CrAT. Here we describe a functional characterization of the CrAT promoter region under conditions of L-carnitine deficiency and supplementation as well as fenofibrate induction in cell culture cells. RESULTS: The murine CrAT promoter displays some characteristics of a housekeeping gene: it lacks a TATA-box, is very GC-rich and harbors two Sp1 binding sites. Analysis of the promoter activity of CrAT by luciferase assays uncovered a L-carnitine sensitive region within −342 bp of the transcription start. Electrophoretic mobility shift and supershift assays proved the sequence element (−228/-222) to be an L-carnitine sensitive RXRα binding site, which also showed sensitivity to application of anti-PPARα and anti-PPARbp antibodies. In addition we analysed this specific RXRα/PPARα site by Southwestern Blotting technique and could pin down three protein factors binding to this promoter element. By qPCR we could quantify the nutrigenomic effect of L-carnitine itself and fenofibrate. CONCLUSIONS: Our results indicate a cooperative interplay of L-carnitine and PPARα in transcriptional regulation of murine CrAT, which is of nutrigenomical relevance. We created experimental proof that the muCrAT gene clearly is a PPARα target. Both L-carnitine and fenofibrate are inducers of CrAT transcripts, but the important hyperlipidemic drug fenofibrate being a more potent one, as a consequence of its pharmacological interaction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-514) contains supplementary material, which is available to authorized users. BioMed Central 2014-06-24 /pmc/articles/PMC4089027/ /pubmed/24962334 http://dx.doi.org/10.1186/1471-2164-15-514 Text en © Kienesberger et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Kienesberger, Klemens Pordes, Aniko Ginta Völk, Thomas Georg Hofbauer, Reinhold L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells |
title | L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells |
title_full | L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells |
title_fullStr | L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells |
title_full_unstemmed | L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells |
title_short | L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells |
title_sort | l-carnitine and pparα-agonist fenofibrate are involved in the regulation of carnitine acetyltransferase (crat) mrna levels in murine liver cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089027/ https://www.ncbi.nlm.nih.gov/pubmed/24962334 http://dx.doi.org/10.1186/1471-2164-15-514 |
work_keys_str_mv | AT kienesbergerklemens lcarnitineandpparaagonistfenofibrateareinvolvedintheregulationofcarnitineacetyltransferasecratmrnalevelsinmurinelivercells AT pordesanikoginta lcarnitineandpparaagonistfenofibrateareinvolvedintheregulationofcarnitineacetyltransferasecratmrnalevelsinmurinelivercells AT volkthomasgeorg lcarnitineandpparaagonistfenofibrateareinvolvedintheregulationofcarnitineacetyltransferasecratmrnalevelsinmurinelivercells AT hofbauerreinhold lcarnitineandpparaagonistfenofibrateareinvolvedintheregulationofcarnitineacetyltransferasecratmrnalevelsinmurinelivercells |