Cargando…
Contributions of Microglia to Structural Synaptic Plasticity
Synaptic plasticity critically depends on reciprocal interactions between neurons and glia. Among glial cells, microglia represent approximately 10% of the total brain cell population serve as the brain’s resident macrophage, and help to modulate neural activity. Because of their special role in the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089681/ https://www.ncbi.nlm.nih.gov/pubmed/25157211 http://dx.doi.org/10.4137/JEN.S11269 |
_version_ | 1782325154902179840 |
---|---|
author | Kim, Kyung Ho Son, Sung Min Mook-Jung, Inhee |
author_facet | Kim, Kyung Ho Son, Sung Min Mook-Jung, Inhee |
author_sort | Kim, Kyung Ho |
collection | PubMed |
description | Synaptic plasticity critically depends on reciprocal interactions between neurons and glia. Among glial cells, microglia represent approximately 10% of the total brain cell population serve as the brain’s resident macrophage, and help to modulate neural activity. Because of their special role in the brain’s immune response, microglia are involved in the pathological progression of neurodegenerative disorders such as Alzheimer’s disease (AD). However, microglia also are surveyors of the brain’s health and continuously contact dendritic spines to regulate structural synaptic changes. This review summarizes our current understanding of neuronal-microglial signals that affect neural function at the synapse. Here, we examine the role of microglia in neuronal synapses in pathological brains and specifically focus on in vivo studies using 2-photon microscopy. Furthermore, because the role of microglia in AD progression is controversial, we outline the interaction between neurons and microglia in pathological conditions such as AD. |
format | Online Article Text |
id | pubmed-4089681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Libertas Academica |
record_format | MEDLINE/PubMed |
spelling | pubmed-40896812014-08-25 Contributions of Microglia to Structural Synaptic Plasticity Kim, Kyung Ho Son, Sung Min Mook-Jung, Inhee J Exp Neurosci Review Synaptic plasticity critically depends on reciprocal interactions between neurons and glia. Among glial cells, microglia represent approximately 10% of the total brain cell population serve as the brain’s resident macrophage, and help to modulate neural activity. Because of their special role in the brain’s immune response, microglia are involved in the pathological progression of neurodegenerative disorders such as Alzheimer’s disease (AD). However, microglia also are surveyors of the brain’s health and continuously contact dendritic spines to regulate structural synaptic changes. This review summarizes our current understanding of neuronal-microglial signals that affect neural function at the synapse. Here, we examine the role of microglia in neuronal synapses in pathological brains and specifically focus on in vivo studies using 2-photon microscopy. Furthermore, because the role of microglia in AD progression is controversial, we outline the interaction between neurons and microglia in pathological conditions such as AD. Libertas Academica 2013-10-31 /pmc/articles/PMC4089681/ /pubmed/25157211 http://dx.doi.org/10.4137/JEN.S11269 Text en © 2013 the author(s), publisher and licensee Libertas Academica Ltd. This is an open access article published under the Creative Commons CC-BY-NC 3.0 license. |
spellingShingle | Review Kim, Kyung Ho Son, Sung Min Mook-Jung, Inhee Contributions of Microglia to Structural Synaptic Plasticity |
title | Contributions of Microglia to Structural Synaptic Plasticity |
title_full | Contributions of Microglia to Structural Synaptic Plasticity |
title_fullStr | Contributions of Microglia to Structural Synaptic Plasticity |
title_full_unstemmed | Contributions of Microglia to Structural Synaptic Plasticity |
title_short | Contributions of Microglia to Structural Synaptic Plasticity |
title_sort | contributions of microglia to structural synaptic plasticity |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089681/ https://www.ncbi.nlm.nih.gov/pubmed/25157211 http://dx.doi.org/10.4137/JEN.S11269 |
work_keys_str_mv | AT kimkyungho contributionsofmicrogliatostructuralsynapticplasticity AT sonsungmin contributionsofmicrogliatostructuralsynapticplasticity AT mookjunginhee contributionsofmicrogliatostructuralsynapticplasticity |