Cargando…

Protein Expression Dynamics During Postnatal Mouse Brain Development

We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Laeremans, Annelies, Van de Plas, Babs, Clerens, Stefan, Van den Bergh, Gert, Arckens, Lutgarde, Hu, Tjing-Tjing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089830/
https://www.ncbi.nlm.nih.gov/pubmed/25157209
http://dx.doi.org/10.4137/JEN.S12453
Descripción
Sumario:We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation.