Cargando…
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a...
Autores principales: | Amini, Amineh, Saboohi, Hadi, Ying Wah, Teh, Herawan, Tutut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090461/ https://www.ncbi.nlm.nih.gov/pubmed/25110753 http://dx.doi.org/10.1155/2014/926020 |
Ejemplares similares
-
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
por: Aghabozorgi, Saeed, et al.
Publicado: (2014) -
JLVEA: Lightweight Real-Time Video Stream Encryption Algorithm for Internet of Things
por: Yun, Junhyeok, et al.
Publicado: (2020) -
Streaming Data Fusion for the Internet of Things
por: Kenda, Klemen, et al.
Publicado: (2019) -
Advances on computational intelligence in energy: the applications of nature-inspired metaheuristic algorithms in energy
por: Herawan, Tutut, et al.
Publicado: (2019) -
Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting
por: Waheeb, Waddah, et al.
Publicado: (2016)