Cargando…

Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis

BACKGROUND: Atopic dermatitis (AD; eczema) is characterized by a widespread abnormality in cutaneous barrier function and propensity to inflammation. Filaggrin is a multifunctional protein and plays a key role in skin barrier formation. Loss-of-function mutations in the gene encoding filaggrin (FLG)...

Descripción completa

Detalles Bibliográficos
Autores principales: Cole, Christian, Kroboth, Karin, Schurch, Nicholas J., Sandilands, Aileen, Sherstnev, Alexander, O'Regan, Grainne M., Watson, Rosemarie M., Irwin McLean, W.H., Barton, Geoffrey J., Irvine, Alan D., Brown, Sara J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mosby 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090750/
https://www.ncbi.nlm.nih.gov/pubmed/24880632
http://dx.doi.org/10.1016/j.jaci.2014.04.021
_version_ 1782480693371076608
author Cole, Christian
Kroboth, Karin
Schurch, Nicholas J.
Sandilands, Aileen
Sherstnev, Alexander
O'Regan, Grainne M.
Watson, Rosemarie M.
Irwin McLean, W.H.
Barton, Geoffrey J.
Irvine, Alan D.
Brown, Sara J.
author_facet Cole, Christian
Kroboth, Karin
Schurch, Nicholas J.
Sandilands, Aileen
Sherstnev, Alexander
O'Regan, Grainne M.
Watson, Rosemarie M.
Irwin McLean, W.H.
Barton, Geoffrey J.
Irvine, Alan D.
Brown, Sara J.
author_sort Cole, Christian
collection PubMed
description BACKGROUND: Atopic dermatitis (AD; eczema) is characterized by a widespread abnormality in cutaneous barrier function and propensity to inflammation. Filaggrin is a multifunctional protein and plays a key role in skin barrier formation. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a highly significant risk factor for atopic disease, but the molecular mechanisms leading to dermatitis remain unclear. OBJECTIVE: We sought to interrogate tissue-specific variations in the expressed genome in the skin of children with AD and to investigate underlying pathomechanisms in atopic skin. METHODS: We applied single-molecule direct RNA sequencing to analyze the whole transcriptome using minimal tissue samples. Uninvolved skin biopsy specimens from 26 pediatric patients with AD were compared with site-matched samples from 10 nonatopic teenage control subjects. Cases and control subjects were screened for FLG genotype to stratify the data set. RESULTS: Two thousand four hundred thirty differentially expressed genes (false discovery rate, P < .05) were identified, of which 211 were significantly upregulated and 490 downregulated by greater than 2-fold. Gene ontology terms for “extracellular space” and “defense response” were enriched, whereas “lipid metabolic processes” were downregulated. The subset of FLG wild-type cases showed dysregulation of genes involved with lipid metabolism, whereas filaggrin haploinsufficiency affected global gene expression and was characterized by a type 1 interferon–mediated stress response. CONCLUSION: These analyses demonstrate the importance of extracellular space and lipid metabolism in atopic skin pathology independent of FLG genotype, whereas an aberrant defense response is seen in subjects with FLG mutations. Genotype stratification of the large data set has facilitated functional interpretation and might guide future therapy development.
format Online
Article
Text
id pubmed-4090750
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Mosby
record_format MEDLINE/PubMed
spelling pubmed-40907502014-07-23 Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis Cole, Christian Kroboth, Karin Schurch, Nicholas J. Sandilands, Aileen Sherstnev, Alexander O'Regan, Grainne M. Watson, Rosemarie M. Irwin McLean, W.H. Barton, Geoffrey J. Irvine, Alan D. Brown, Sara J. J Allergy Clin Immunol Atopic Dermatitis and Skin Disease BACKGROUND: Atopic dermatitis (AD; eczema) is characterized by a widespread abnormality in cutaneous barrier function and propensity to inflammation. Filaggrin is a multifunctional protein and plays a key role in skin barrier formation. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a highly significant risk factor for atopic disease, but the molecular mechanisms leading to dermatitis remain unclear. OBJECTIVE: We sought to interrogate tissue-specific variations in the expressed genome in the skin of children with AD and to investigate underlying pathomechanisms in atopic skin. METHODS: We applied single-molecule direct RNA sequencing to analyze the whole transcriptome using minimal tissue samples. Uninvolved skin biopsy specimens from 26 pediatric patients with AD were compared with site-matched samples from 10 nonatopic teenage control subjects. Cases and control subjects were screened for FLG genotype to stratify the data set. RESULTS: Two thousand four hundred thirty differentially expressed genes (false discovery rate, P < .05) were identified, of which 211 were significantly upregulated and 490 downregulated by greater than 2-fold. Gene ontology terms for “extracellular space” and “defense response” were enriched, whereas “lipid metabolic processes” were downregulated. The subset of FLG wild-type cases showed dysregulation of genes involved with lipid metabolism, whereas filaggrin haploinsufficiency affected global gene expression and was characterized by a type 1 interferon–mediated stress response. CONCLUSION: These analyses demonstrate the importance of extracellular space and lipid metabolism in atopic skin pathology independent of FLG genotype, whereas an aberrant defense response is seen in subjects with FLG mutations. Genotype stratification of the large data set has facilitated functional interpretation and might guide future therapy development. Mosby 2014-07 /pmc/articles/PMC4090750/ /pubmed/24880632 http://dx.doi.org/10.1016/j.jaci.2014.04.021 Text en © 2014 The Authors http://creativecommons.org/licenses/by/3.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Atopic Dermatitis and Skin Disease
Cole, Christian
Kroboth, Karin
Schurch, Nicholas J.
Sandilands, Aileen
Sherstnev, Alexander
O'Regan, Grainne M.
Watson, Rosemarie M.
Irwin McLean, W.H.
Barton, Geoffrey J.
Irvine, Alan D.
Brown, Sara J.
Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis
title Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis
title_full Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis
title_fullStr Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis
title_full_unstemmed Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis
title_short Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis
title_sort filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis
topic Atopic Dermatitis and Skin Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090750/
https://www.ncbi.nlm.nih.gov/pubmed/24880632
http://dx.doi.org/10.1016/j.jaci.2014.04.021
work_keys_str_mv AT colechristian filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT krobothkarin filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT schurchnicholasj filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT sandilandsaileen filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT sherstnevalexander filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT oregangrainnem filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT watsonrosemariem filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT irwinmcleanwh filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT bartongeoffreyj filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT irvinealand filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis
AT brownsaraj filaggrinstratifiedtranscriptomicanalysisofpediatricskinidentifiesmechanisticpathwaysinpatientswithatopicdermatitis