Cargando…

The quantitative architecture of centromeric chromatin

The centromere, responsible for chromosome segregation during mitosis, is epigenetically defined by CENP-A containing chromatin. The amount of centromeric CENP-A has direct implications for both the architecture and epigenetic inheritance of centromeres. Using complementary strategies, we determined...

Descripción completa

Detalles Bibliográficos
Autores principales: Bodor, Dani L, Mata, João F, Sergeev, Mikhail, David, Ana Filipa, Salimian, Kevan J, Panchenko, Tanya, Cleveland, Don W, Black, Ben E, Shah, Jagesh V, Jansen, Lars ET
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091408/
https://www.ncbi.nlm.nih.gov/pubmed/25027692
http://dx.doi.org/10.7554/eLife.02137
Descripción
Sumario:The centromere, responsible for chromosome segregation during mitosis, is epigenetically defined by CENP-A containing chromatin. The amount of centromeric CENP-A has direct implications for both the architecture and epigenetic inheritance of centromeres. Using complementary strategies, we determined that typical human centromeres contain ∼400 molecules of CENP-A, which is controlled by a mass-action mechanism. This number, despite representing only ∼4% of all centromeric nucleosomes, forms a ∼50-fold enrichment to the overall genome. In addition, although pre-assembled CENP-A is randomly segregated during cell division, this amount of CENP-A is sufficient to prevent stochastic loss of centromere function and identity. Finally, we produced a statistical map of CENP-A occupancy at a human neocentromere and identified nucleosome positions that feature CENP-A in a majority of cells. In summary, we present a quantitative view of the centromere that provides a mechanistic framework for both robust epigenetic inheritance of centromeres and the paucity of neocentromere formation. DOI: http://dx.doi.org/10.7554/eLife.02137.001