Cargando…

Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: successes and barriers to integrated vector management

BACKGROUND: Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and opt...

Descripción completa

Detalles Bibliográficos
Autores principales: Naranjo, Diana P, Qualls, Whitney A, Jurado, Hugo, Perez, Juan C, Xue, Rui-De, Gomez, Eduardo, Beier, John C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091644/
https://www.ncbi.nlm.nih.gov/pubmed/24990155
http://dx.doi.org/10.1186/1471-2458-14-674
Descripción
Sumario:BACKGROUND: Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. METHODS: Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. RESULTS: Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. CONCLUSION: IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health.