Cargando…
Identification of pathogens from blood culture bottles in spiked and clinical samples using matrix-assisted laser desorption ionization time-of-flight mass-spectrometry analysis
BACKGROUND: Blood stream infections significantly contribute to mortality. An early most appropriate antimicrobial therapy is crucial for a favourable outcome of the patient. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) may speed up the diagnostic of ca...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091744/ https://www.ncbi.nlm.nih.gov/pubmed/24972877 http://dx.doi.org/10.1186/1756-0500-7-405 |
Sumario: | BACKGROUND: Blood stream infections significantly contribute to mortality. An early most appropriate antimicrobial therapy is crucial for a favourable outcome of the patient. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) may speed up the diagnostic of causative micro organisms. FINDINGS: MALDI-TOF MS using the SARAMIS database was applied to 37 spiked blood culture samples. Identification rates of spiked samples were as follows: The species level was determined in 16 of 21 (76.2%) Gram negative bacteria and in 11 of 13 (84.6%) Gram positive bacteria. Genus level only was determined in additional 2 Gram negative and for the 2 Gram positive strains. Yeast species could not be identified. MALDI-TOF MS was also compared to cultured-based results in standard routine diagnostic. Identification rates of patient samples were as follows: The species level was determined in 41 of 47 (87.2%) Gram negative bacteria and in 63 of 123 (51.2%) Gram positive bacteria. Genus level only was determined in additional 2 Gram negative bacteria. Once again no yeasts were identified. A prolonged incubation of BC bottles for 16 hours after primary positive alert did not influence the concentration of bacteria and identification rates. CONCLUSIONS: The SARAMIS database used in our experiments mainly confirms previous findings that were obtained with the MALDI-TOF MS BRUKER system by others. |
---|