Cargando…
Social reward requires coordinated activity of accumbens oxytocin and 5HT
Social behaviors in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviors, the neural mechanisms by which soci...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091761/ https://www.ncbi.nlm.nih.gov/pubmed/24025838 http://dx.doi.org/10.1038/nature12518 |
_version_ | 1782480801102823424 |
---|---|
author | Dölen, Gül Darvishzadeh, Ayeh Huang, Kee Wui Malenka, Robert C. |
author_facet | Dölen, Gül Darvishzadeh, Ayeh Huang, Kee Wui Malenka, Robert C. |
author_sort | Dölen, Gül |
collection | PubMed |
description | Social behaviors in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviors, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin (OT) acts as a social reinforcement signal within the nucleus accumbens (NAc) core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the NAc receives OT receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-HT) innervation to the NAc, abolishes the reinforcing properties of social interaction. Furthermore, OT-induced synaptic plasticity requires activation of NAc 5-HT1b receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of OT and 5-HT in the NAc, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism. |
format | Online Article Text |
id | pubmed-4091761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
record_format | MEDLINE/PubMed |
spelling | pubmed-40917612014-07-10 Social reward requires coordinated activity of accumbens oxytocin and 5HT Dölen, Gül Darvishzadeh, Ayeh Huang, Kee Wui Malenka, Robert C. Nature Article Social behaviors in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviors, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin (OT) acts as a social reinforcement signal within the nucleus accumbens (NAc) core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the NAc receives OT receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-HT) innervation to the NAc, abolishes the reinforcing properties of social interaction. Furthermore, OT-induced synaptic plasticity requires activation of NAc 5-HT1b receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of OT and 5-HT in the NAc, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism. 2013-09-12 /pmc/articles/PMC4091761/ /pubmed/24025838 http://dx.doi.org/10.1038/nature12518 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Dölen, Gül Darvishzadeh, Ayeh Huang, Kee Wui Malenka, Robert C. Social reward requires coordinated activity of accumbens oxytocin and 5HT |
title | Social reward requires coordinated activity of accumbens oxytocin and 5HT |
title_full | Social reward requires coordinated activity of accumbens oxytocin and 5HT |
title_fullStr | Social reward requires coordinated activity of accumbens oxytocin and 5HT |
title_full_unstemmed | Social reward requires coordinated activity of accumbens oxytocin and 5HT |
title_short | Social reward requires coordinated activity of accumbens oxytocin and 5HT |
title_sort | social reward requires coordinated activity of accumbens oxytocin and 5ht |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091761/ https://www.ncbi.nlm.nih.gov/pubmed/24025838 http://dx.doi.org/10.1038/nature12518 |
work_keys_str_mv | AT dolengul socialrewardrequirescoordinatedactivityofaccumbensoxytocinand5ht AT darvishzadehayeh socialrewardrequirescoordinatedactivityofaccumbensoxytocinand5ht AT huangkeewui socialrewardrequirescoordinatedactivityofaccumbensoxytocinand5ht AT malenkarobertc socialrewardrequirescoordinatedactivityofaccumbensoxytocinand5ht |