Cargando…
Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements
Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-spe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091789/ https://www.ncbi.nlm.nih.gov/pubmed/25010632 http://dx.doi.org/10.1371/journal.pgen.1004495 |
_version_ | 1782480804264280064 |
---|---|
author | Kahn, Tatyana G. Stenberg, Per Pirrotta, Vincenzo Schwartz, Yuri B. |
author_facet | Kahn, Tatyana G. Stenberg, Per Pirrotta, Vincenzo Schwartz, Yuri B. |
author_sort | Kahn, Tatyana G. |
collection | PubMed |
description | Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL), which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies. |
format | Online Article Text |
id | pubmed-4091789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40917892014-07-18 Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements Kahn, Tatyana G. Stenberg, Per Pirrotta, Vincenzo Schwartz, Yuri B. PLoS Genet Research Article Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL), which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies. Public Library of Science 2014-07-10 /pmc/articles/PMC4091789/ /pubmed/25010632 http://dx.doi.org/10.1371/journal.pgen.1004495 Text en © 2014 Kahn et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kahn, Tatyana G. Stenberg, Per Pirrotta, Vincenzo Schwartz, Yuri B. Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements |
title | Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements |
title_full | Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements |
title_fullStr | Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements |
title_full_unstemmed | Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements |
title_short | Combinatorial Interactions Are Required for the Efficient Recruitment of Pho Repressive Complex (PhoRC) to Polycomb Response Elements |
title_sort | combinatorial interactions are required for the efficient recruitment of pho repressive complex (phorc) to polycomb response elements |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091789/ https://www.ncbi.nlm.nih.gov/pubmed/25010632 http://dx.doi.org/10.1371/journal.pgen.1004495 |
work_keys_str_mv | AT kahntatyanag combinatorialinteractionsarerequiredfortheefficientrecruitmentofphorepressivecomplexphorctopolycombresponseelements AT stenbergper combinatorialinteractionsarerequiredfortheefficientrecruitmentofphorepressivecomplexphorctopolycombresponseelements AT pirrottavincenzo combinatorialinteractionsarerequiredfortheefficientrecruitmentofphorepressivecomplexphorctopolycombresponseelements AT schwartzyurib combinatorialinteractionsarerequiredfortheefficientrecruitmentofphorepressivecomplexphorctopolycombresponseelements |