Cargando…

Strontium Isotope Signals in Cremated Petrous Portions as Indicator for Childhood Origin

Dental enamel is currently of high informative value in studies concerning childhood origin and human mobility because the strontium isotope ratio in human dental enamel is indicative of geographical origin. However, many prehistoric burials involve cremation and although strontium retains its origi...

Descripción completa

Detalles Bibliográficos
Autores principales: Harvig, Lise, Frei, Karin Margarita, Price, T. Douglas, Lynnerup, Niels
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091946/
https://www.ncbi.nlm.nih.gov/pubmed/25010496
http://dx.doi.org/10.1371/journal.pone.0101603
Descripción
Sumario:Dental enamel is currently of high informative value in studies concerning childhood origin and human mobility because the strontium isotope ratio in human dental enamel is indicative of geographical origin. However, many prehistoric burials involve cremation and although strontium retains its original biological isotopic composition, even when exposed to very high temperatures, intact dental enamel is rarely preserved in cremated or burned human remains. When preserved, fragments of dental enamel may be difficult to recognize and identify. Finding a substitute material for strontium isotope analysis of burned human remains, reflecting childhood values, is hence of high priority. This is the first study comparing strontium isotope ratios from cremated and non-cremated petrous portions with enamel as indicator for childhood origin. We show how strontium isotope ratios in the otic capsule of the petrous portion of the inner ear are highly correlated with strontium isotope ratios in dental enamel from the same individual, whether inhumed or cremated. This implies that strontium isotope ratios in the petrous bone, which practically always survives cremation, are indicative of childhood origin for human skeletal remains. Hence, the petrous bone is ideal as a substitute material for strontium isotope analysis of burned human remains.