Cargando…
On the Correlation between Reservoir Metrics and Performance for Time Series Classification under the Influence of Synaptic Plasticity
Reservoir computing provides a simpler paradigm of training recurrent networks by initialising and adapting the recurrent connections separately to a supervised linear readout. This creates a problem, though. As the recurrent weights and topology are now separated from adapting to the task, there is...
Autores principales: | Chrol-Cannon, Joseph, Jin, Yaochu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092026/ https://www.ncbi.nlm.nih.gov/pubmed/25010415 http://dx.doi.org/10.1371/journal.pone.0101792 |
Ejemplares similares
-
Learning structure of sensory inputs with synaptic plasticity leads to interference
por: Chrol-Cannon, Joseph, et al.
Publicado: (2015) -
A unified computational model of the genetic regulatory networks underlying synaptic, intrinsic and homeostatic plasticity
por: Bush, Daniel, et al.
Publicado: (2011) -
Stress gates an astrocytic energy reservoir to impair synaptic plasticity
por: Murphy-Royal, Ciaran, et al.
Publicado: (2020) -
Reservoir based spiking models for univariate Time Series Classification
por: Gaurav, Ramashish, et al.
Publicado: (2023) -
Author Correction: Stress gates an astrocytic energy reservoir to impair synaptic plasticity
por: Murphy-Royal, Ciaran, et al.
Publicado: (2020)