Cargando…
Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms
In lakes, trophic change and climate change shift the relationship between nutrients and physical factors, like temperature and photoperiod, and interactions between these factors should affect the growth of phytoplankton species differently. We therefore determined the relationship between P-limite...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092130/ https://www.ncbi.nlm.nih.gov/pubmed/25010420 http://dx.doi.org/10.1371/journal.pone.0102367 |
_version_ | 1782325451265409024 |
---|---|
author | Shatwell, Tom Köhler, Jan Nicklisch, Andreas |
author_facet | Shatwell, Tom Köhler, Jan Nicklisch, Andreas |
author_sort | Shatwell, Tom |
collection | PubMed |
description | In lakes, trophic change and climate change shift the relationship between nutrients and physical factors, like temperature and photoperiod, and interactions between these factors should affect the growth of phytoplankton species differently. We therefore determined the relationship between P-limited specific growth rates and P-quota (biovolume basis) of Stephanodiscus minutulus and Nitzschia acicularis (diatoms) at or near light saturation in axenic, semi-continuous culture at 10, 15 and 20 °C and at 6, 9 and 12 h d(−1) photoperiod. Photoperiod treatments were performed at constant daily light exposure to allow comparison. Under these conditions, we also performed competition experiments and estimated relative P-uptake rates of the species. Temperature strongly affected P-limited growth rates and relative P uptake rates, whereas photoperiod only affected maximum growth rates. S. minutulus used internal P more efficiently than N. acicularis. N. acicularis was the superior competitor for P due to a higher relative uptake rate and its superiority increased with increasing temperature and photoperiod. S. minutulus conformed to the Droop relationship but N. acicularis did not. A model with a temperature-dependent normalised half-saturation coefficient adequately described the factor interactions of both species. The temperature dependence of the quota model reflected each species’ specific adaptation to its ecological niche. The results demonstrate that increases in temperature or photoperiod can partially compensate for a decrease in P-quota under moderately limiting conditions, like during spring in temperate lakes. Thus warming may counteract de-eutrophication to some degree and a relative shift in growth factors can influence the phytoplankton species composition. |
format | Online Article Text |
id | pubmed-4092130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40921302014-07-18 Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms Shatwell, Tom Köhler, Jan Nicklisch, Andreas PLoS One Research Article In lakes, trophic change and climate change shift the relationship between nutrients and physical factors, like temperature and photoperiod, and interactions between these factors should affect the growth of phytoplankton species differently. We therefore determined the relationship between P-limited specific growth rates and P-quota (biovolume basis) of Stephanodiscus minutulus and Nitzschia acicularis (diatoms) at or near light saturation in axenic, semi-continuous culture at 10, 15 and 20 °C and at 6, 9 and 12 h d(−1) photoperiod. Photoperiod treatments were performed at constant daily light exposure to allow comparison. Under these conditions, we also performed competition experiments and estimated relative P-uptake rates of the species. Temperature strongly affected P-limited growth rates and relative P uptake rates, whereas photoperiod only affected maximum growth rates. S. minutulus used internal P more efficiently than N. acicularis. N. acicularis was the superior competitor for P due to a higher relative uptake rate and its superiority increased with increasing temperature and photoperiod. S. minutulus conformed to the Droop relationship but N. acicularis did not. A model with a temperature-dependent normalised half-saturation coefficient adequately described the factor interactions of both species. The temperature dependence of the quota model reflected each species’ specific adaptation to its ecological niche. The results demonstrate that increases in temperature or photoperiod can partially compensate for a decrease in P-quota under moderately limiting conditions, like during spring in temperate lakes. Thus warming may counteract de-eutrophication to some degree and a relative shift in growth factors can influence the phytoplankton species composition. Public Library of Science 2014-07-10 /pmc/articles/PMC4092130/ /pubmed/25010420 http://dx.doi.org/10.1371/journal.pone.0102367 Text en © 2014 Shatwell et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shatwell, Tom Köhler, Jan Nicklisch, Andreas Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms |
title | Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms |
title_full | Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms |
title_fullStr | Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms |
title_full_unstemmed | Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms |
title_short | Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms |
title_sort | temperature and photoperiod interactions with phosphorus-limited growth and competition of two diatoms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092130/ https://www.ncbi.nlm.nih.gov/pubmed/25010420 http://dx.doi.org/10.1371/journal.pone.0102367 |
work_keys_str_mv | AT shatwelltom temperatureandphotoperiodinteractionswithphosphoruslimitedgrowthandcompetitionoftwodiatoms AT kohlerjan temperatureandphotoperiodinteractionswithphosphoruslimitedgrowthandcompetitionoftwodiatoms AT nicklischandreas temperatureandphotoperiodinteractionswithphosphoruslimitedgrowthandcompetitionoftwodiatoms |