Cargando…
AC driven magnetic domain quantification with 5 nm resolution
As the magnetic storage density increases in commercial products, e.g. the hard disc drives, a full understanding of dynamic magnetism in nanometer resolution underpins the development of next-generation products. Magnetic force microscopy (MFM) is well suited to exploring ferromagnetic domain struc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092349/ https://www.ncbi.nlm.nih.gov/pubmed/25011670 http://dx.doi.org/10.1038/srep05594 |
Sumario: | As the magnetic storage density increases in commercial products, e.g. the hard disc drives, a full understanding of dynamic magnetism in nanometer resolution underpins the development of next-generation products. Magnetic force microscopy (MFM) is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Moreover, the dynamic magnetism cannot be characterized because MFM is only sensitive to the static magnetic fields. Here, we develop a side-band magnetic force microscopy (MFM) to locally observe the alternating magnetic fields in nanometer length scales at an operating distance of 1 nm. Variations in alternating magnetic fields and their relating time-variable magnetic domain reversals have been demonstrated by the side-band MFM. The magnetic domain wall motions, relating to the periodical rotation of sample magnetization, are quantified via micromagnetics. Based on the side-band MFM, the magnetic moment can be determined locally in a volume as small as 5 nanometers. The present technique can be applied to investigate the microscopic magnetic domain structures in a variety of magnetic materials, and allows a wide range of future applications, for example, in data storage and biomedicine. |
---|