Cargando…
Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds
Four, lactating dairy crossbreds (50%×50% Holstein Friesian×Native Zebu cattle) were randomly assigned according to a 2×2 factorial arrangement (two protein levels and two levels of mangosteen peel pellets (Mago-pel)) in a 4×4 Latin square design to receive four dietary treatments. All cows received...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092972/ https://www.ncbi.nlm.nih.gov/pubmed/25049652 http://dx.doi.org/10.5713/ajas.2012.12053 |
_version_ | 1782325623157424128 |
---|---|
author | Norrapoke, T. Wanapat, M. Wanapat, S. |
author_facet | Norrapoke, T. Wanapat, M. Wanapat, S. |
author_sort | Norrapoke, T. |
collection | PubMed |
description | Four, lactating dairy crossbreds (50%×50% Holstein Friesian×Native Zebu cattle) were randomly assigned according to a 2×2 factorial arrangement (two protein levels and two levels of mangosteen peel pellets (Mago-pel)) in a 4×4 Latin square design to receive four dietary treatments. All cows received concentrate at a proportion of 1 kg concentrate per 2 kg of milk yield, and urea-treated 5% rice straw (UTRS) was given ad libitum. It was found that total dry matter intakes, nutrient digestibility, ruminal pH and NH(3)-N concentrations were not affected (p>0.05) by treatments. Concentrations of ruminal pH and NH(3)-N were not affected by dietary treatments although the concentration of BUN varied significantly (p<0.05) between protein levels (p<0.05). The populations of rumen bacteria and fungal zoospores did not differ among treatments (p>0.05); however, the population of protozoa was decreased (p<0.05) when cows received Mago-pel supplementation. The composition of the population of bacteria, identified by real-time PCR technique, including total bacteria, methanogens, Fibrobacter succinogenes and Ruminococcus albus was similar (p>0.05) among dietary treatments (p>0.05); however, copy numbers of Ruminococcus flavefaciens was increased when protein level increased (p<0.05). Microbial protein synthesis, in terms of both quantity and efficiency, was enriched by Mago-pel supplementation. Milk yield was greatest in cows fed UTRS based diets with concentrate containing protein at 16% CP with Mago-pel, but were lowest without Mago-pel (p<0.05). In addition, protein level and supplementation of Mago-pel did not affect (p>0.05) milk composition except solids-not-fat which was higher in cows fed the diet with 19% CP. Therefore, feeding a concentrate containing 16% CP together with 300 g/hd/d Mago-pel supplementation results in changes in rumen fermentation and microbial population and improvements in milk production in lactating dairy crossbreds fed on UTRS. |
format | Online Article Text |
id | pubmed-4092972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) |
record_format | MEDLINE/PubMed |
spelling | pubmed-40929722014-07-21 Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds Norrapoke, T. Wanapat, M. Wanapat, S. Asian-Australas J Anim Sci Article Four, lactating dairy crossbreds (50%×50% Holstein Friesian×Native Zebu cattle) were randomly assigned according to a 2×2 factorial arrangement (two protein levels and two levels of mangosteen peel pellets (Mago-pel)) in a 4×4 Latin square design to receive four dietary treatments. All cows received concentrate at a proportion of 1 kg concentrate per 2 kg of milk yield, and urea-treated 5% rice straw (UTRS) was given ad libitum. It was found that total dry matter intakes, nutrient digestibility, ruminal pH and NH(3)-N concentrations were not affected (p>0.05) by treatments. Concentrations of ruminal pH and NH(3)-N were not affected by dietary treatments although the concentration of BUN varied significantly (p<0.05) between protein levels (p<0.05). The populations of rumen bacteria and fungal zoospores did not differ among treatments (p>0.05); however, the population of protozoa was decreased (p<0.05) when cows received Mago-pel supplementation. The composition of the population of bacteria, identified by real-time PCR technique, including total bacteria, methanogens, Fibrobacter succinogenes and Ruminococcus albus was similar (p>0.05) among dietary treatments (p>0.05); however, copy numbers of Ruminococcus flavefaciens was increased when protein level increased (p<0.05). Microbial protein synthesis, in terms of both quantity and efficiency, was enriched by Mago-pel supplementation. Milk yield was greatest in cows fed UTRS based diets with concentrate containing protein at 16% CP with Mago-pel, but were lowest without Mago-pel (p<0.05). In addition, protein level and supplementation of Mago-pel did not affect (p>0.05) milk composition except solids-not-fat which was higher in cows fed the diet with 19% CP. Therefore, feeding a concentrate containing 16% CP together with 300 g/hd/d Mago-pel supplementation results in changes in rumen fermentation and microbial population and improvements in milk production in lactating dairy crossbreds fed on UTRS. Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2012-07 /pmc/articles/PMC4092972/ /pubmed/25049652 http://dx.doi.org/10.5713/ajas.2012.12053 Text en Copyright © 2012 by Asian-Australasian Journal of Animal Sciences This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Norrapoke, T. Wanapat, M. Wanapat, S. Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds |
title | Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds |
title_full | Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds |
title_fullStr | Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds |
title_full_unstemmed | Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds |
title_short | Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds |
title_sort | effects of protein level and mangosteen peel pellets (mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092972/ https://www.ncbi.nlm.nih.gov/pubmed/25049652 http://dx.doi.org/10.5713/ajas.2012.12053 |
work_keys_str_mv | AT norrapoket effectsofproteinlevelandmangosteenpeelpelletsmagopelinconcentratedietsonrumenfermentationandmilkproductioninlactatingdairycrossbreds AT wanapatm effectsofproteinlevelandmangosteenpeelpelletsmagopelinconcentratedietsonrumenfermentationandmilkproductioninlactatingdairycrossbreds AT wanapats effectsofproteinlevelandmangosteenpeelpelletsmagopelinconcentratedietsonrumenfermentationandmilkproductioninlactatingdairycrossbreds |