Cargando…

Energy and Ileal Digestible Amino Acid Concentrations for Growing Pigs and Performance of Weanling Pigs Fed Fermented or Conventional Soybean Meal

A new strategy of co-inoculating Bacillus subtilis MA139 with Streptococcus thermophilus and Saccharomyces cerevisiae was used to produce fermented soybean meal (FSBM). Three experiments were conducted to determine the concentration of digestible energy (DE) and metabolizable energy (ME) (Exp. 1), a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Y., Lu, W. Q., Li, D. F., Liu, X. T., Wang, H. L., Niu, S., Piao, X. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4093199/
https://www.ncbi.nlm.nih.gov/pubmed/25050006
http://dx.doi.org/10.5713/ajas.2013.13612
Descripción
Sumario:A new strategy of co-inoculating Bacillus subtilis MA139 with Streptococcus thermophilus and Saccharomyces cerevisiae was used to produce fermented soybean meal (FSBM). Three experiments were conducted to determine the concentration of digestible energy (DE) and metabolizable energy (ME) (Exp. 1), apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids (AA) (Exp. 2), and feeding value (Exp. 3) of FSBM produced by this new strategy (NFSB) compared with soybean meal (SBM) and conventionally available FSBM (Suprotein). In Exp. 1, twenty-four barrows (initial body weight [BW] of 32.2 ±1.7 kg) were randomly allotted to 1 of 4 diets with 6 replicates per diet. A corn basal diet and 3 diets based on a mixture of corn and 1 of 3 soybean products listed above were formulated and the DE and ME contents were determined by the difference method. The results showed that there were no differences in DE and ME between SBM and either FSBM product (p>0.05). In Exp. 2, eight barrows (initial BW of 26.8±1.5 kg) were fitted with ileal T-cannulaes and used in a replicated 4×4 Latin square design. Three corn-starch-based diets were formulated using each of the 3 soybean products as the sole source of AA. A nitrogen-free diet was also formulated to measure endogenous losses of AA. The results showed that the SID of all AA except arginine and histidine was similar for NFSB and SBM (p>0.05), but Suprotein had greater (p<0.05) SID of most AA except lysine, aspartate, glycine and proline than NFSB. In Exp. 3, a total of 144 piglets (initial BW of 8.8±1.2 kg) were blocked by weight and fed 1 of 4 diets including a control diet with 24% SBM as well as diets containing 6% and 12% NFSB or 12% Suprotein added at the expense of SBM. During d 15 to 28, replacing SBM with 6% NFSB significantly improved average daily gain (ADG) and average daily feed intake (ADFI) (p<0.05) for nursery piglets. During the overall experiment, ADG of piglets fed diets containing 6% NFSB was significantly greater (p<0.05) than that of piglets fed SBM. In conclusion, fermentation with the new strategy did not affect the energy content or the AID and the SID of AA in SBM. However, inclusion of 6% NFSB in diets fed to nursery piglets improved performance after weaning likely as a result of better nutritional status and reduced immunological challenge.