Cargando…
Theoretical and experimental study of the role of cell-cell dipole interaction in dielectrophoretic devices: application to polynomial electrodes
BACKGROUND: We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. METHODS: We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable pa...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094478/ https://www.ncbi.nlm.nih.gov/pubmed/24903282 http://dx.doi.org/10.1186/1475-925X-13-71 |
Sumario: | BACKGROUND: We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. METHODS: We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions. RESULTS: The real and simulated distributions are consistent. In both cases the cells distribution near the electrodes is dominated by cell-cell dipole interactions which generate long chains. CONCLUSIONS: The agreement between real and simulated cells’ distributions demonstrate the method’s reliability. The distribution are dominated by cell-cell dipole interactions even at low density regimes (10(5) cell/ml). An improved estimate for the density threshold governing the interaction free regime is suggested. |
---|