Cargando…
Higher serum S100B and BDNF levels are correlated with a lower pressure-pain threshold in fibromyalgia
BACKGROUND: Fibromyalgia (FM) is conceptualized as a central sensitization (CS) condition, that presents high serum brain-derived neurotrophic factor (BDNF) and neuroglia activation. Although the S100B protein regulates neuroglia functions, it has been traditionally used as a proxy of central nervou...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094546/ https://www.ncbi.nlm.nih.gov/pubmed/25005881 http://dx.doi.org/10.1186/1744-8069-10-46 |
Sumario: | BACKGROUND: Fibromyalgia (FM) is conceptualized as a central sensitization (CS) condition, that presents high serum brain-derived neurotrophic factor (BDNF) and neuroglia activation. Although the S100B protein regulates neuroglia functions, it has been traditionally used as a proxy of central nervous system damage. However, neither BDNF nor S100B association with the clinical picture of FM has been elucidated. To explore their association with the pressure-pain threshold (PPT) in FM, we performed a cross-sectional study, including 56 females with confirmed FM aged 18–65 years. Linear regression models were used to adjust for potential confounding factors between serum BDNF, S100B and PPT. RESULTS: Serum BDNF and S100B were correlated (Spearman’s Rho = 0.29). Serum BDNF (log) and S100B (log) were correlated with the PPT (log) (Partial η(2) = 0.129, P = 0.012 for the BDNF (log), and Partial η(2) = 0.105, P = 0.025 for the S100B (log)). Serum BDNF (log) was inversely associated with PPT (log) (β = -1.01, SE = 0.41), age (β = -0.02, SE = 0.15) and obsessive compulsive disorder (β = -0.36, SE = 0.15), while serum S100B (log) was inversely associated with PPT (log) (β = -1.38, SE = 0.50), only. CONCLUSIONS: Both neuroglia key mediators in the CS process were inversely correlated with the PPT. Serum assessment of BDNF and S100B deserve further study to determine its potential as a proxy for the CS spectrum in FM. |
---|