Cargando…

Retention and mitigation of metals in sediment, soil, water, and plant of a newly constructed root-channel wetland (China) from slightly polluted source water

Constructed root-channel wetland (CRCW) is a term for pre-pond/wetland/post-pond complexes, where the wetland includes plant-bed/ditch landscape and root-channel structure. Source water out of pre-ponds flows through alternate small ditches and plant beds with root-channels via a big ditch under hyd...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Baoling, Wang, Yu, Wang, Weidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094763/
https://www.ncbi.nlm.nih.gov/pubmed/25032090
http://dx.doi.org/10.1186/2193-1801-3-326
Descripción
Sumario:Constructed root-channel wetland (CRCW) is a term for pre-pond/wetland/post-pond complexes, where the wetland includes plant-bed/ditch landscape and root-channel structure. Source water out of pre-ponds flows through alternate small ditches and plant beds with root-channels via a big ditch under hydraulic regulation. Then source water flows into post-ponds to finish final polishing. This article aims to explore the potential of components of a pilot CRCW in China on mitigating metals in micro-polluted source water during its initial operation stage. We investigated six heavy metals (Cd, Cr, Cu, Ni, Zn, and Pb) in surface sediment, plant-bed subsurface soil, water, and aquatic plants during 2012–2013. Monitoring results showed that pond/ditch sediments and plant-bed soil retained a significant amount of Cr, Ni, and Zn with 93.1%, 72.4%, and 57.5% samples showing contamination factor above limit 1 respectively. Remarkably the high values of metal enrichment factor (EF) occurred in root-channel zones. Water monitoring results indicated that Ni, Zn, and Pb were removed by 78.5% (66.7%), 57.6% (59.6%), and 26.0% (7.5%) in east (west) wetland respectively. Mass balance estimation revealed that heavy metal mass in the pond/ditch sediments accounted for 63.30% and that in plant-bed soil 36.67%, while plant uptake occupied only 0.03%. The heavy metal accretion flux in sediments was 0.41 - 211.08 μg · cm(-2) · a(-1), less than that in plant-bed soil (0.73 - 543.94 μg · cm(-2) · a(-1)). The 1.83 ha wetland has retained about 86.18 kg total heavy metals within 494 days after operation. This pilot case study proves that constructed root-channel wetland can reduce the potential ecological risk of purified raw water and provide a new and effective method for the removal of heavy metals from drinking water sources. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2193-1801-3-326) contains supplementary material, which is available to authorized users.