Cargando…

HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation

The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constr...

Descripción completa

Detalles Bibliográficos
Autores principales: Mei, Shu-Li, Zhu, De-Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094883/
https://www.ncbi.nlm.nih.gov/pubmed/25050394
http://dx.doi.org/10.1155/2014/417486
_version_ 1782325913898188800
author Mei, Shu-Li
Zhu, De-Hai
author_facet Mei, Shu-Li
Zhu, De-Hai
author_sort Mei, Shu-Li
collection PubMed
description The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the image denoising is decreased to O(4(J+2j)) from O(4(3J)), (j ≪ J). The experiment results show that the dynamic choice scheme of the external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with the classical interval wavelets numerical methods.
format Online
Article
Text
id pubmed-4094883
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-40948832014-07-21 HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation Mei, Shu-Li Zhu, De-Hai ScientificWorldJournal Research Article The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the image denoising is decreased to O(4(J+2j)) from O(4(3J)), (j ≪ J). The experiment results show that the dynamic choice scheme of the external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with the classical interval wavelets numerical methods. Hindawi Publishing Corporation 2014 2014-06-23 /pmc/articles/PMC4094883/ /pubmed/25050394 http://dx.doi.org/10.1155/2014/417486 Text en Copyright © 2014 S.-L. Mei and D.-H. Zhu. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Mei, Shu-Li
Zhu, De-Hai
HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation
title HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation
title_full HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation
title_fullStr HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation
title_full_unstemmed HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation
title_short HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation
title_sort hpm-based dynamic sparse grid approach for perona-malik equation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094883/
https://www.ncbi.nlm.nih.gov/pubmed/25050394
http://dx.doi.org/10.1155/2014/417486
work_keys_str_mv AT meishuli hpmbaseddynamicsparsegridapproachforperonamalikequation
AT zhudehai hpmbaseddynamicsparsegridapproachforperonamalikequation