Cargando…

Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography

BACKGROUND: Lethal amanitas (Amanita section Phalloideae) are a group of wild, fatal mushrooms causing many poisoning cases worldwide. However, the diversity and evolutionary history of these lethal mushrooms remain poorly known due to the limited sampling and insufficient gene fragments employed fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Qing, Tulloss, Rodham E, Tang, Li P, Tolgor, Bau, Zhang, Ping, Chen, Zuo H, Yang, Zhu L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094918/
https://www.ncbi.nlm.nih.gov/pubmed/24950598
http://dx.doi.org/10.1186/1471-2148-14-143
_version_ 1782325921900920832
author Cai, Qing
Tulloss, Rodham E
Tang, Li P
Tolgor, Bau
Zhang, Ping
Chen, Zuo H
Yang, Zhu L
author_facet Cai, Qing
Tulloss, Rodham E
Tang, Li P
Tolgor, Bau
Zhang, Ping
Chen, Zuo H
Yang, Zhu L
author_sort Cai, Qing
collection PubMed
description BACKGROUND: Lethal amanitas (Amanita section Phalloideae) are a group of wild, fatal mushrooms causing many poisoning cases worldwide. However, the diversity and evolutionary history of these lethal mushrooms remain poorly known due to the limited sampling and insufficient gene fragments employed for phylogenetic analyses. In this study, five gene loci (nrLSU, ITS, rpb2, ef1-α and β-tubulin) with a widely geographic sampling from East and South Asia, Europe, North and Central America, South Africa and Australia were analysed with maximum-likelihood, maximum-parsimony and Bayesian inference methods. Biochemical analyses were also conducted with intention to detect amatoxins and phalloidin in 14 representative samples. RESULT: Lethal amanitas were robustly supported to be a monophyletic group after excluding five species that were provisionally defined as lethal amanitas based on morphological studies. In lethal amanitas, 28 phylogenetic species were recognised by integrating molecular phylogenetic analyses with morphological studies, and 14 of them represented putatively new species. The biochemical analyses indicated a single origin of cyclic peptide toxins (amatoxins and phalloidin) within Amanita and suggested that this kind of toxins seemed to be a synapomorphy of lethal amanitas. Molecular dating through BEAST and biogeographic analyses with LAGRANGE and RASP indicated that lethal amanitas most likely originated in the Palaeotropics with the present crown group dated around 64.92 Mya in the early Paleocene, and the East Asia–eastern North America or Eurasia–North America–Central America disjunct distribution patterns were primarily established during the middle Oligocene to Miocene. CONCLUSION: The cryptic diversity found in this study indicates that the species diversity of lethal amanitas is strongly underestimated under the current taxonomy. The intercontinental sister species or sister groups relationships among East Asia and eastern North America or Eurasia–North America–Central America within lethal amanitas are best explained by the diversification model of Palaeotropical origin, dispersal via the Bering Land Bridge, followed by regional vicariance speciation resulting from climate change during the middle Oligocene to the present. These findings indicate the importance of both dispersal and vicariance in shaping the intercontinental distributions of these ectomycorrhizal fungi.
format Online
Article
Text
id pubmed-4094918
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40949182014-07-15 Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography Cai, Qing Tulloss, Rodham E Tang, Li P Tolgor, Bau Zhang, Ping Chen, Zuo H Yang, Zhu L BMC Evol Biol Research Article BACKGROUND: Lethal amanitas (Amanita section Phalloideae) are a group of wild, fatal mushrooms causing many poisoning cases worldwide. However, the diversity and evolutionary history of these lethal mushrooms remain poorly known due to the limited sampling and insufficient gene fragments employed for phylogenetic analyses. In this study, five gene loci (nrLSU, ITS, rpb2, ef1-α and β-tubulin) with a widely geographic sampling from East and South Asia, Europe, North and Central America, South Africa and Australia were analysed with maximum-likelihood, maximum-parsimony and Bayesian inference methods. Biochemical analyses were also conducted with intention to detect amatoxins and phalloidin in 14 representative samples. RESULT: Lethal amanitas were robustly supported to be a monophyletic group after excluding five species that were provisionally defined as lethal amanitas based on morphological studies. In lethal amanitas, 28 phylogenetic species were recognised by integrating molecular phylogenetic analyses with morphological studies, and 14 of them represented putatively new species. The biochemical analyses indicated a single origin of cyclic peptide toxins (amatoxins and phalloidin) within Amanita and suggested that this kind of toxins seemed to be a synapomorphy of lethal amanitas. Molecular dating through BEAST and biogeographic analyses with LAGRANGE and RASP indicated that lethal amanitas most likely originated in the Palaeotropics with the present crown group dated around 64.92 Mya in the early Paleocene, and the East Asia–eastern North America or Eurasia–North America–Central America disjunct distribution patterns were primarily established during the middle Oligocene to Miocene. CONCLUSION: The cryptic diversity found in this study indicates that the species diversity of lethal amanitas is strongly underestimated under the current taxonomy. The intercontinental sister species or sister groups relationships among East Asia and eastern North America or Eurasia–North America–Central America within lethal amanitas are best explained by the diversification model of Palaeotropical origin, dispersal via the Bering Land Bridge, followed by regional vicariance speciation resulting from climate change during the middle Oligocene to the present. These findings indicate the importance of both dispersal and vicariance in shaping the intercontinental distributions of these ectomycorrhizal fungi. BioMed Central 2014-06-21 /pmc/articles/PMC4094918/ /pubmed/24950598 http://dx.doi.org/10.1186/1471-2148-14-143 Text en Copyright © 2014 Cai et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Cai, Qing
Tulloss, Rodham E
Tang, Li P
Tolgor, Bau
Zhang, Ping
Chen, Zuo H
Yang, Zhu L
Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography
title Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography
title_full Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography
title_fullStr Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography
title_full_unstemmed Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography
title_short Multi-locus phylogeny of lethal amanitas: Implications for species diversity and historical biogeography
title_sort multi-locus phylogeny of lethal amanitas: implications for species diversity and historical biogeography
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094918/
https://www.ncbi.nlm.nih.gov/pubmed/24950598
http://dx.doi.org/10.1186/1471-2148-14-143
work_keys_str_mv AT caiqing multilocusphylogenyoflethalamanitasimplicationsforspeciesdiversityandhistoricalbiogeography
AT tullossrodhame multilocusphylogenyoflethalamanitasimplicationsforspeciesdiversityandhistoricalbiogeography
AT tanglip multilocusphylogenyoflethalamanitasimplicationsforspeciesdiversityandhistoricalbiogeography
AT tolgorbau multilocusphylogenyoflethalamanitasimplicationsforspeciesdiversityandhistoricalbiogeography
AT zhangping multilocusphylogenyoflethalamanitasimplicationsforspeciesdiversityandhistoricalbiogeography
AT chenzuoh multilocusphylogenyoflethalamanitasimplicationsforspeciesdiversityandhistoricalbiogeography
AT yangzhul multilocusphylogenyoflethalamanitasimplicationsforspeciesdiversityandhistoricalbiogeography