Cargando…
Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients
BACKGROUND: Cancer patient's outcome is written, in part, in the gene expression profile of the tumor. We previously identified a 62-probe sets signature (NB-hypo) to identify tissue hypoxia in neuroblastoma tumors and showed that NB-hypo stratified neuroblastoma patients in good and poor outco...
Autores principales: | Cangelosi, Davide, Muselli, Marco, Parodi, Stefano, Blengio, Fabiola, Becherini, Pamela, Versteeg, Rogier, Conte, Massimo, Varesio, Luigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4095004/ https://www.ncbi.nlm.nih.gov/pubmed/25078098 http://dx.doi.org/10.1186/1471-2105-15-S5-S4 |
Ejemplares similares
-
Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients
por: Cangelosi, Davide, et al.
Publicado: (2013) -
Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome
por: Cornero, Andrea, et al.
Publicado: (2012) -
Artificial neural network classifier predicts neuroblastoma patients’ outcome
por: Cangelosi, Davide, et al.
Publicado: (2016) -
Transcriptome analysis defines myocardium gene signatures in children with ToF and ASD and reveals disease-specific molecular reprogramming in response to surgery with cardiopulmonary bypass
por: Raggi, Federica, et al.
Publicado: (2020) -
Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming
por: Cangelosi, Davide, et al.
Publicado: (2020)