Cargando…
Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098900/ https://www.ncbi.nlm.nih.gov/pubmed/25025374 http://dx.doi.org/10.1371/journal.pone.0102107 |
_version_ | 1782326401162018816 |
---|---|
author | Parmar, Chintan Rios Velazquez, Emmanuel Leijenaar, Ralph Jermoumi, Mohammed Carvalho, Sara Mak, Raymond H. Mitra, Sushmita Shankar, B. Uma Kikinis, Ron Haibe-Kains, Benjamin Lambin, Philippe Aerts, Hugo J. W. L. |
author_facet | Parmar, Chintan Rios Velazquez, Emmanuel Leijenaar, Ralph Jermoumi, Mohammed Carvalho, Sara Mak, Raymond H. Mitra, Sushmita Shankar, B. Uma Kikinis, Ron Haibe-Kains, Benjamin Lambin, Philippe Aerts, Hugo J. W. L. |
author_sort | Parmar, Chintan |
collection | PubMed |
description | Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation. Where manual delineation is time consuming and prone to inter-observer variability, it has been shown that semi-automated approaches are fast and reduce inter-observer variability. In this study, a semiautomatic region growing volumetric segmentation algorithm, implemented in the free and publicly available 3D-Slicer platform, was investigated in terms of its robustness for quantitative imaging feature extraction. Fifty-six 3D-radiomic features, quantifying phenotypic differences based on tumor intensity, shape and texture, were extracted from the computed tomography images of twenty lung cancer patients. These radiomic features were derived from the 3D-tumor volumes defined by three independent observers twice using 3D-Slicer, and compared to manual slice-by-slice delineations of five independent physicians in terms of intra-class correlation coefficient (ICC) and feature range. Radiomic features extracted from 3D-Slicer segmentations had significantly higher reproducibility (ICC = 0.85±0.15, p = 0.0009) compared to the features extracted from the manual segmentations (ICC = 0.77±0.17). Furthermore, we found that features extracted from 3D-Slicer segmentations were more robust, as the range was significantly smaller across observers (p = 3.819e-07), and overlapping with the feature ranges extracted from manual contouring (boundary lower: p = 0.007, higher: p = 5.863e-06). Our results show that 3D-Slicer segmented tumor volumes provide a better alternative to the manual delineation for feature quantification, as they yield more reproducible imaging descriptors. Therefore, 3D-Slicer can be employed for quantitative image feature extraction and image data mining research in large patient cohorts. |
format | Online Article Text |
id | pubmed-4098900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40989002014-07-18 Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation Parmar, Chintan Rios Velazquez, Emmanuel Leijenaar, Ralph Jermoumi, Mohammed Carvalho, Sara Mak, Raymond H. Mitra, Sushmita Shankar, B. Uma Kikinis, Ron Haibe-Kains, Benjamin Lambin, Philippe Aerts, Hugo J. W. L. PLoS One Research Article Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation. Where manual delineation is time consuming and prone to inter-observer variability, it has been shown that semi-automated approaches are fast and reduce inter-observer variability. In this study, a semiautomatic region growing volumetric segmentation algorithm, implemented in the free and publicly available 3D-Slicer platform, was investigated in terms of its robustness for quantitative imaging feature extraction. Fifty-six 3D-radiomic features, quantifying phenotypic differences based on tumor intensity, shape and texture, were extracted from the computed tomography images of twenty lung cancer patients. These radiomic features were derived from the 3D-tumor volumes defined by three independent observers twice using 3D-Slicer, and compared to manual slice-by-slice delineations of five independent physicians in terms of intra-class correlation coefficient (ICC) and feature range. Radiomic features extracted from 3D-Slicer segmentations had significantly higher reproducibility (ICC = 0.85±0.15, p = 0.0009) compared to the features extracted from the manual segmentations (ICC = 0.77±0.17). Furthermore, we found that features extracted from 3D-Slicer segmentations were more robust, as the range was significantly smaller across observers (p = 3.819e-07), and overlapping with the feature ranges extracted from manual contouring (boundary lower: p = 0.007, higher: p = 5.863e-06). Our results show that 3D-Slicer segmented tumor volumes provide a better alternative to the manual delineation for feature quantification, as they yield more reproducible imaging descriptors. Therefore, 3D-Slicer can be employed for quantitative image feature extraction and image data mining research in large patient cohorts. Public Library of Science 2014-07-15 /pmc/articles/PMC4098900/ /pubmed/25025374 http://dx.doi.org/10.1371/journal.pone.0102107 Text en © 2014 Parmar et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Parmar, Chintan Rios Velazquez, Emmanuel Leijenaar, Ralph Jermoumi, Mohammed Carvalho, Sara Mak, Raymond H. Mitra, Sushmita Shankar, B. Uma Kikinis, Ron Haibe-Kains, Benjamin Lambin, Philippe Aerts, Hugo J. W. L. Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation |
title | Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation |
title_full | Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation |
title_fullStr | Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation |
title_full_unstemmed | Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation |
title_short | Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation |
title_sort | robust radiomics feature quantification using semiautomatic volumetric segmentation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098900/ https://www.ncbi.nlm.nih.gov/pubmed/25025374 http://dx.doi.org/10.1371/journal.pone.0102107 |
work_keys_str_mv | AT parmarchintan robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT riosvelazquezemmanuel robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT leijenaarralph robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT jermoumimohammed robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT carvalhosara robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT makraymondh robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT mitrasushmita robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT shankarbuma robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT kikinisron robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT haibekainsbenjamin robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT lambinphilippe robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation AT aertshugojwl robustradiomicsfeaturequantificationusingsemiautomaticvolumetricsegmentation |