Cargando…
Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the...
Autores principales: | Parmar, Chintan, Rios Velazquez, Emmanuel, Leijenaar, Ralph, Jermoumi, Mohammed, Carvalho, Sara, Mak, Raymond H., Mitra, Sushmita, Shankar, B. Uma, Kikinis, Ron, Haibe-Kains, Benjamin, Lambin, Philippe, Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098900/ https://www.ncbi.nlm.nih.gov/pubmed/25025374 http://dx.doi.org/10.1371/journal.pone.0102107 |
Ejemplares similares
-
Volumetric CT-based segmentation of NSCLC using 3D-Slicer
por: Velazquez, Emmanuel Rios, et al.
Publicado: (2013) -
Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Defining the biological basis of radiomic phenotypes in lung cancer
por: Grossmann, Patrick, et al.
Publicado: (2017) -
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
por: Aerts, Hugo J. W. L., et al.
Publicado: (2014) -
Corrigendum: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
por: Aerts, Hugo J.W.L., et al.
Publicado: (2014)