Cargando…

An Emergency Packet Forwarding Scheme for V2V Communication Networks

This paper proposes an effective warning message forwarding scheme for cooperative collision avoidance. In an emergency situation, an emergency-detecting vehicle warns the neighbor vehicles via an emergency warning message. Since the transmission range is limited, the warning message is broadcast in...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoque, Faika, Kwon, Sungoh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4099114/
https://www.ncbi.nlm.nih.gov/pubmed/25054181
http://dx.doi.org/10.1155/2014/480435
Descripción
Sumario:This paper proposes an effective warning message forwarding scheme for cooperative collision avoidance. In an emergency situation, an emergency-detecting vehicle warns the neighbor vehicles via an emergency warning message. Since the transmission range is limited, the warning message is broadcast in a multihop manner. Broadcast packets lead two challenges to forward the warning message in the vehicular network: redundancy of warning messages and competition with nonemergency transmissions. In this paper, we study and address the two major challenges to achieve low latency in delivery of the warning message. To reduce the intervehicle latency and end-to-end latency, which cause chain collisions, we propose a two-way intelligent broadcasting method with an adaptable distance-dependent backoff algorithm. Considering locations of vehicles, the proposed algorithm controls the broadcast of a warning message to reduce redundant EWM messages and adaptively chooses the contention window to compete with nonemergency transmission. Via simulations, we show that our proposed algorithm reduces the probability of rear-end crashes by 70% compared to previous algorithms by reducing the intervehicle delay. We also show that the end-to-end propagation delay of the warning message is reduced by 55%.