Cargando…
Electron spin manipulation and readout through an optical fiber
The electron spin of nitrogen--vacancy (NV) centers in diamond offers a solid-state quantum bit and enables high-precision magnetic-field sensing on the nanoscale. Implementation of these approaches in a fiber format would offer unique opportunities for a broad range of technologies ranging from qua...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100017/ https://www.ncbi.nlm.nih.gov/pubmed/25028257 http://dx.doi.org/10.1038/srep05362 |
Sumario: | The electron spin of nitrogen--vacancy (NV) centers in diamond offers a solid-state quantum bit and enables high-precision magnetic-field sensing on the nanoscale. Implementation of these approaches in a fiber format would offer unique opportunities for a broad range of technologies ranging from quantum information to neuroscience and bioimaging. Here, we demonstrate an ultracompact fiber-optic probe where a diamond microcrystal with a well-defined orientation of spin quantization NV axes is attached to the fiber tip, allowing the electron spins of NV centers to be manipulated, polarized, and read out through a fiber-optic waveguide integrated with a two-wire microwave transmission line. The microwave field transmitted through this line is used to manipulate the orientation of electron spins in NV centers through the electron-spin resonance tuned by an external magnetic field. The electron spin is then optically initialized and read out, with the initializing laser radiation and the photoluminescence spin-readout return from NV centers delivered by the same optical fiber. |
---|