Cargando…

Inhibition of Human Cytochrome P450 Enzymes by Allergen Removed Rhus verniciflua Stoke Standardized Extract and Constituents

Objective. Potential interactions between herbal extracts and the cytochrome P450 (CYP) system lead to serious adverse events or decreased drug efficacy. Rhus verniciflua stoke (RVS) and its constituents have been reported to have various pharmacological properties. We evaluated the inhibitory poten...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Hyunsik, Lee, Sanghun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100265/
https://www.ncbi.nlm.nih.gov/pubmed/25061471
http://dx.doi.org/10.1155/2014/150351
Descripción
Sumario:Objective. Potential interactions between herbal extracts and the cytochrome P450 (CYP) system lead to serious adverse events or decreased drug efficacy. Rhus verniciflua stoke (RVS) and its constituents have been reported to have various pharmacological properties. We evaluated the inhibitory potential of RVS and its constituents on the major CYP isoforms. Methods. The effects of allergen removed RVS (aRVS) standardized extract and major components, fustin and fisetin isolated from aRVS, were evaluated on CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 isoenzyme activity by a luminescent CYP recombinant human enzyme assay. Results. The aRVS extract showed relative potent inhibitory effects on the CYP2C9 (IC(50), <0.001 μg/mL), CYP2C19 (IC(50), 9.68 μg/mL), and CYP1A2 (IC(50), 10.0 μg/mL). However, it showed weak inhibition on CYP3A4 and CYP2D6. Fustin showed moderate inhibitory effects on the CYP2C19 (IC(50), 64.3 μg/mL) and weak inhibition of the other CYP isoforms similar to aRVS. Fisetin showed potent inhibitory effects on CYP2C9, CYP2C19, and CYP1A2. Fisetin showed moderate inhibition of CYP2D6 and weak inhibition of CYP3A4. Conclusions. These results indicate that aRVS, a clinically available herbal medicine, could contribute to herb-drug interactions when orally coadministered with drugs metabolized by CYP2C9, CYP2C19, and CYP1A2.