Cargando…

Correlation between the Bone Mineral Density and Stress on Femur around a Duetto SI Stem

In cementless stem fixation, BMD reduction around the stem is of concern because it may cause loosening. This BMD reduction is assumed to be caused by stem implantation-induced alteration of the physiological feedback system, which may cause stress shielding and result in loosening, but the causal r...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakai, Rina, Yamamoto, Takeaki, Uchiyama, Katsufumi, Uchida, Kentaro, Nakao, Masaki, Mabuchi, Kiyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100402/
https://www.ncbi.nlm.nih.gov/pubmed/25093208
http://dx.doi.org/10.1155/2014/786185
Descripción
Sumario:In cementless stem fixation, BMD reduction around the stem is of concern because it may cause loosening. This BMD reduction is assumed to be caused by stem implantation-induced alteration of the physiological feedback system, which may cause stress shielding and result in loosening, but the causal relationship has not been clarified. In this study, using a Duetto SI stem, we investigated the correlation between the postoperative BMD around the stem and stress. In patients who underwent their first THA at the orthopedic department of our university, the BMD was measured using DEXA, and FEA was performed with an equivalent time course. Time-course changes in the BMD, von Mises stress, and triaxial stress in Gruen zones 1 through 7 were calculated from those measured at 2 weeks and 5 months after surgery. The BMD and von Mises stress showed a bidirectional correlation when Gruen's classification was plotted on the horizontal axis. An increase in stress loaded on bone was assumed to be a factor increasing the BMD. The Duetto SI stem was fixed on the distal side, suggesting its stable fixation. BMD measurement and FEA were useful for quantification of the bone dynamics around the stem from an early phase.