Cargando…
Content-Based Image Retrieval Using Spatial Layout Information in Brain Tumor T1-Weighted Contrast-Enhanced MR Images
This study aims to develop content-based image retrieval (CBIR) system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR) images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-...
Autores principales: | Huang, Meiyan, Yang, Wei, Wu, Yao, Jiang, Jun, Gao, Yang, Chen, Yang, Feng, Qianjin, Chen, Wufan, Lu, Zhentai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100908/ https://www.ncbi.nlm.nih.gov/pubmed/25028970 http://dx.doi.org/10.1371/journal.pone.0102754 |
Ejemplares similares
-
Retrieval of Brain Tumors with Region-Specific Bag-of-Visual-Words Representations in Contrast-Enhanced MRI Images
por: Huang, Meiyan, et al.
Publicado: (2012) -
Extraction of Lesion-Partitioned Features and Retrieval of Contrast-Enhanced Liver Images
por: Yu, Mei, et al.
Publicado: (2012) -
Automatic Segmentation of Myocardium from Black-Blood MR Images Using Entropy and Local Neighborhood Information
por: Zheng, Qian, et al.
Publicado: (2015) -
Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation
por: Cheng, Jun, et al.
Publicado: (2016) -
Soft Tissue/Bone Decomposition of Conventional Chest Radiographs Using Nonparametric Image Priors
por: Liu, Yunbi, et al.
Publicado: (2019)